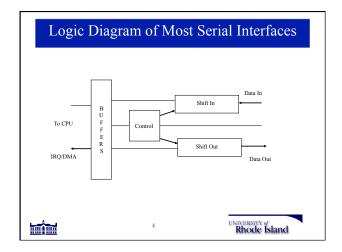
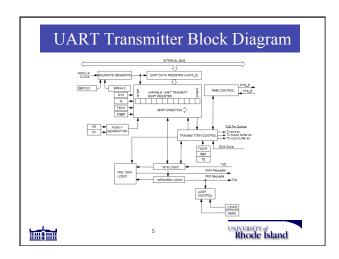
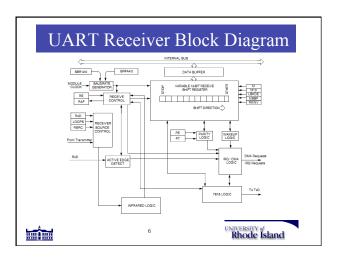


Concepts of Serial Communication


- · Limitations of Parallel Bus
 - Clock skew becomes a serious issue for high speed and long distance
 - Cost of wire, fewer wires cost less and occupies less space
 - Cross talk between multiple conductors, affecting signal quality
- · Serial Communication
 - Sending data a bit at a time, sequentially, over a communication channel
 - Un-clocked, no clock skew problem
 - Fewer wires → low cost, more space for better isolation from surroundings
- · Simplex, half-duplex, and full-duplex
 - Simplex: data can be transferred in only one direction
 - Half-duplex: data can be transferred in two directions, but one at a time
 - Full-duplex: data can be transferred in two directions concurrently




General Procedure and Logic of Serial Communication

- Special signal marks
 - Start bit and stop bit that mark the begin and end of one comm
- · Parity bit
 - Error checking and correction
 - Even parity, odd parity, CRC, Hamming code, etc.
- Baud rate
 - Specifies how fast bit sequence is transmitted
- · Buffering for transmitter and receiver

1

UART Instantiations on Kinetis

UART Instance	ISO-7816 Supported?	FIFOs	Module Clock	Maximum Baud Rate
UART0	Yes	8 entry TxFIFO 8 entry RxFIFO	Core Clock (Max freq = 100 MHz)	6.25 Mbits/sec
UART1	No	8 entry TxFIFO 8 entry RxFIFO	Core Clock (Max freq = 100 MHz)	6.25 Mbits/sec
UART2-UART5	No	No FIFOs (double buffered operation)	Peripheral Clock (Max freq = 50 MHz)	3.13 Mbits/sec

OTH	1	Dela	niled Signal Desci	ptions
Signal	1/0	Description		
CTS		Clear to send. Is	ndicates whether the UART can start transmitting data when flow control is enabled.	
		State meaning	Asserted—Data transmission can start.	
			Negated—Data transmission cannot start.	
		Timing	Assertion—When transmitting device's RTS asserts.	
			Negation—When transmitting device's RTS deasserts.	
RTS	0	Request to se receive data. V	ond. When driven by the receiver, indicates whether the UART is ready to When driven by the transmitter, can enable an external transceiver during transmission.	
		State	Asserted-When driven by the receiver, ready to receive data. When	1
		Meaning	driven by the transmitter, enable the external transmitter.	
			Negated—When driven by the receiver, not ready to receive data. When driven by the transmitter, disable the external transmitter.	
		Timing	Assertion—Can occur at any time; can assert asynchronously to the other input signals.	
			Negation—Can occur at any time; can deassert asynchronously to the other input signals.	
RXD	- 1		Receive data. Serial data input to receiver.	
		State meaning	Whether RXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.	
		Timing	Sampled at a frequency determined by the module clock divided by the baud rate.	
TXD	0	Transmit data. Serial data output from transmitter.		
		State meaning	Whether TXD is interpreted as a 1 or 0 depends on the bit encoding method along with other configuration settings.	
		Timing	Driven at the beginning or within a bit time according to the bit encoding method along with other configuration settings. Otherwise, transmissions are independent of reception timing.	
Collision	1	Collision	Detect. Indicates if a collision is detected during Data Transmission.	1
		State	Asserted-Indicates a collision detection. UARTxCPW determines the	1
		Meaning	length of this pulse for valid collision detection. Negated—No collision detected.	
	1	Timing	Asserts asynchronously to other input signals.	RSITY of node Island

UART Modes of Operation

- ▶UART module supports three main operating modes:
 - · UART mode
 - · Supported on all 6 UARTs
 - · IrDA mode
 - · Support on all 6 UARTs
 - · ISO-7816 mode
 - · Only supported on UART0

9

UART Mode Features

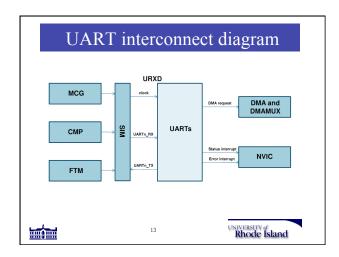
- · Full-duplex serial communication
- Standard mark/space non-return-to-zero (NRZ) format
- 13-bit baud rate selection with /32 fractional divide, based on module clock frequency
- Programmable data formats
 - 8- or 9-bit data formats including 9-bit with parity
 - Programmable transmitter output and receiver input polarity
 Ability to select MSB or LSB to be first bit on wire
- 8 entry Rx and Tx FIFOs available on UART0 and UART1
- Hardware flow control support for request to send (RTS) and clear to send (CTS) signals
- Address match feature in receiver to reduce address mark wakeup ISR overhead
- · Hardware parity generation and checking
- Interfaced to the on-chip DMA
 - nterfaced to the on-chip DMA

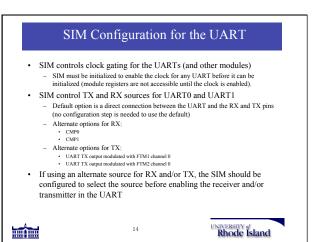
 DMA Rx and Tx requests from the UART can be used to move data without processor intervention

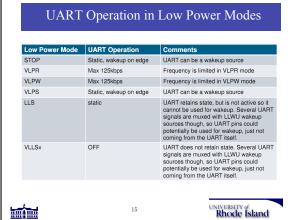
10

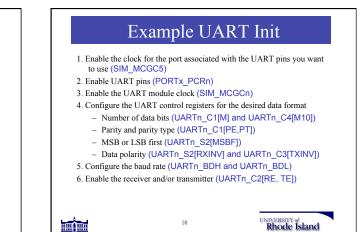
IrDA Mode Features

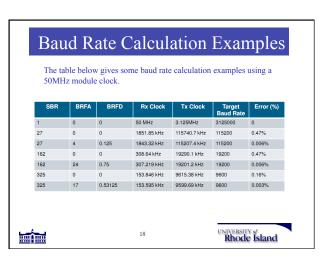
- · Selectable IrDA 1.4 return-to-zero-inverted (RZI) format
- · Programmable narrow pulse transmission and detection
- Support IrDA data rates between 2.4 kbits/s and 115.2 kbits/s
- Several options for changing RX and TX sources for UART0 and UART1 are controlled by the SIM:
 - UARTn_RX input from the pin or from CMP0 or CMP1
 - UARTn_TX output directly from UART or modulated with FTM outputs
 - These options can be used in any UART mode, but are most useful for IrDA applications
- ► NOTE: Although all UARTs include IrDA features only UART0 and UART1 have the alternate options for the TX and RX sources controlled by the SIM


UNIVERSITY of Rhode Island


ISO-7816 Mode Features


- Support for ISO-7816 protocol for interfacing with SIM and smartcards
 - Support of T=0 and T=1 protocols
 - Automatic retransmission of NACK'd packets with programmable retry threshold
 - Support for 11 and 12 ETU transfers
 - Detection of initial packet and automated transfer parameter programming
- Interrupt-driven operation with seven ISO-7816 specific interrupts
 - Wait Time Violated
 - Character Wait Time Violated
 - Block Wait Time Violated
 Initial Character Detected
 - Transmit Error Threshold Exceeded
 - Receive Error Threshold Exceeded
 Guard Time Violated


12



Baud Rate Calculation • The UART has a 13-bit integer divider and a 5-bit fractional fine adjust counter that are used to generate the UART baud rate. UART baud rate = UART module clock/ (16 * (SBR[12:0] + BRFD)) • Where BRFD = the BRFA[4:0] field divided by 32 Rhode Island

Polling, Interrupt, or DMA configuration

- The UART can be configured to handle data flow by polling status flags, generating interrupts, or using the DMA.
- Polling is the most CPU intensive, but might make the most sense when
- handling small messages.

 The UART status interrupt can be used to decrease CPU loading. Status interrupt conditions are:

 - Interrupt conditions are:

 Transmit data empty

 Transmit complete

 Idle line (primarily used for multi-drop applications)

 Receive data full

 LIN break detect

 RxD pin active edge (main use is as a CPU wakeup)

 Initial character detect (used for ISO-7816 mode only)
- The DMA can be used to automatically move receive and/or transmit data to reduce CPU loading even more. DMA requests can be generated on:
 Transmit data empty
 Receive data full

19

