Section 10. Data Storages

Three Basic Functions of Any Digital System:
 Data Processing

 CPU/Memory/IO process data
 Basic computations, searching, sorting, etc

 Data Transmission

 Buses, parallel/serial interfaces
 Wired/wireless networking

 Data Storage

 Keeping persistent data
 Disks, Flash memory, Tapes etc.

Important Issues in Data Storage
Performance
Improve I/O performance not to drag down CPU and memory
✓ Hard disk drive technology
✓ Disk arrays: RAID architecture
Reliability
Data are important assets of businesses and organizations
Keeping data reliable is important
Recoverability
Be able to recover data in case of failure
 Existing data recovery technology and a new one

Γ

1. Controller command interpretation

- > Take and interpret commands, LBA, Sizes from host 2. Seek
- > Move disk head to the track where data is stored 3. Rotation
 - > Wait for the accessed sector to rotate right under the disk
- head

4. Data Transfer

> Transfer data from disk to controller buffer then to host

UNIVERSITY of Rhode Island

RAID Architectures 1. Motivations: Cost of disks is low, is getting less expensive Improve performance, throughput, by parallelism ✓ Multiple I/O requests are done in parallel ✓ Striping single request into chunks Improve reliability using redundancy 5 2. Different RAID Architectures RAID0: striping, no redundancy 5 > RAID1: Mirroring, or shadowing, no striping, 2xN redundancy RAID2: Memory like ECC, Hamming code RAID3: Knowing which disk failed, erasure code, Bit-interleaved, Þ

- Þ RAID4: Block-interleaved, one dedicated parity disk, striping unit varies
- RAID5: Block-interleaved, distributed parity, load balancing. 5

UNIVERSITY of Rhode Island

RAID Architectures RAID, redundant array of inexpensive disks For high speed and high reliability RAID Controller Add a parity disk: RAID0: Striping, Parity = 3+2+1+5=11no redundancy Recover data: 5=11-3-2-1 3 2 1 X 11 RAID-4: striping & parity disk parity If parity blocks for different stripes are distributed evenly across disks, we got RAID-5 Rhode Island

