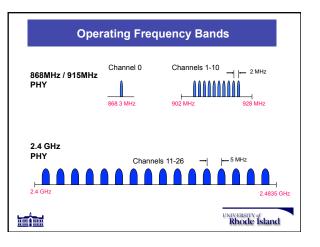
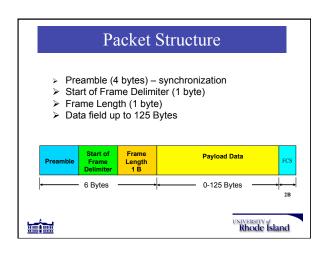
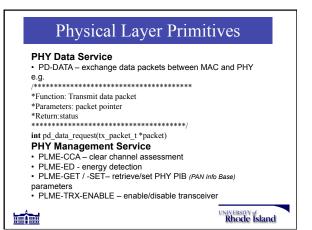
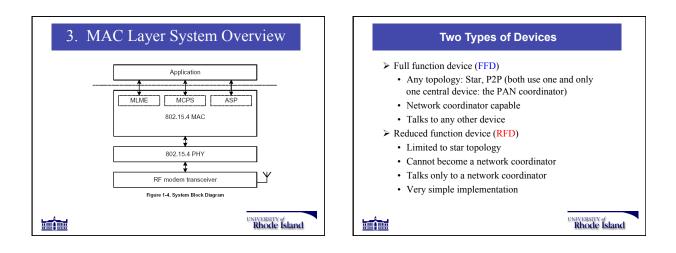


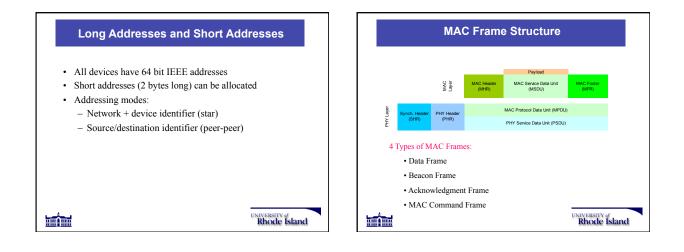
TWR-MC12311 Software Solutions	
 SMAC (Simple Media Access Controller) This codebase provides simple communication and test apps based on drivers/PHY utilities available as source code. This environment is 	
drivers/PHY utilities available as source code. This environment is useful for hardware and RF debug, hardware standards certification, and developing proprietary applications.	
IEEE 802.15.4 MAC with custom PHY layer	
The Freescale MAC is a robust, mature codebase useful for developing networking solutions. Freescale is implementing an IEEE 802.15.4 MAC-compatible custom sub-1 GHz PHY template that can be used across different frequency bands.	
This capability allows users to build powerful networking solutions on a known, stable codebase.	
Wireless MBUS stack	
Freescale is porting an existing wireless MBUS codebase to the MC12311 platform which will be available through an <u>external</u>	
partner. UNIVERSITY of Rhode Islan	d

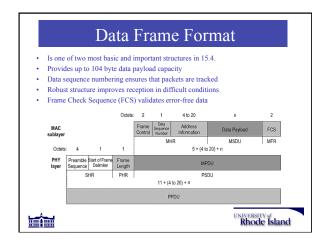

Different Wireless Protocols 1. Why ZigBee? • We have WiFi, Cellular, Bluetooth, Why another Standard?							
	Bandwidth	Power Consump	Protocol Stack Size	Advantages	Applications		
Standard							
Wi-Fi (802.11)	Up to 54Mbps	400+mA TX, standby 20mA	100+KB	High data rate	Internet browsing, PC networking, file transfers		
Bluetooth (802.15.1)	1Mbps	40mA TX, standby 0.2mA	~100+KB	Interoperabilit y, cable replacement	Wireless USB, handset, headset		
ZigBee (802.15.4)	250kbps	30mA TX, standby 3uA	4-32KB	Long battery life, low cost	Remote control, battery- operated products, sensors		
Rhode Island							

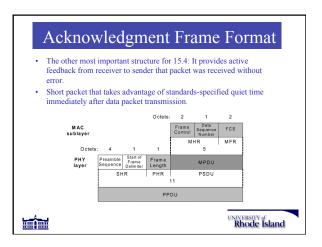


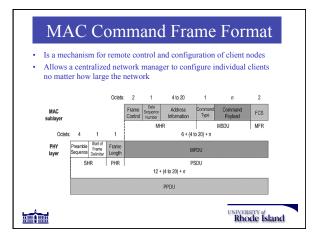


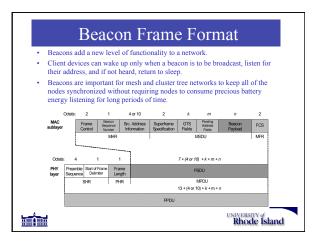


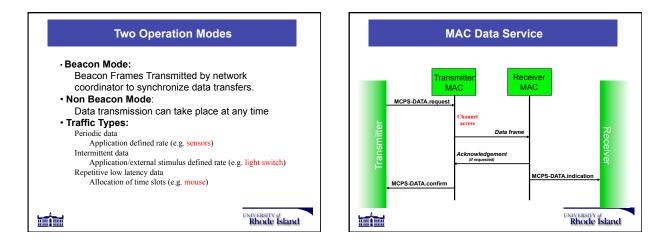

Rhode Island

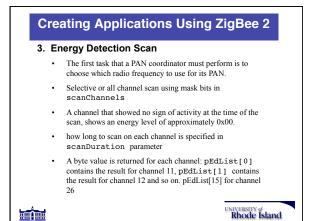












Creating Applications Using ZigBee 1

- Initialization: by calling Init_802_15_4()
- 2. Starting a New PAN: After setup, MLME, MCPS, and ASP can be accessed by apps
 - First thing is to set up a coordinator because all IEEE 802.15.4 Standard PANs must have a PAN

Rhode Island

Creating Applications Using ZigBee 3

4. Choosing Short Address

- All units come with a pre-assigned long address, but a short address must be assigned before starting the PAN. Otherwise, the start request will fail
- Because the PAN coordinator is the first unit to participate in its own PAN, it can chose any short address for itself.
- The short address must be different from 0xFFFF.
- A long address is 8 bytes long; a short address is 2 bytes long.

5. Choosing PAN ID

the last thing required before a PAN coordinator can start a PAN, is for the coordinator to select an identification number for the PAN which is called the PANid, that must be unique in the logical channel.

UNIVERSITY of Rhode Island

Creating Applications Using ZigBee 4

6. Starting a PAN

- After choosing a logical channel, PANid, and short address, it is time to start up the PAN using the MLME_START.request primitive.
- The panCoordinator parameter indicates whether the start request is to start up a PAN for a PAN coordinator or for a coordinator without PAN coordinator capability
- beaconOrder and superFrameOrder parameters are set to 0x0F because users want to start a non-beacon network.
- Finally, the securityEnable parameter tells the MLME if it should apply any security to the transactions taking place over the air.

UNIVERSITY of Rhode Island

Application Support Features Profile: an agreement on a series of messages defining an application space (for example, "Home Controls - Lighting")

- Endpoint: a physical dimension added to a single ZigBee radio that permits support for multiple applications, addressed by the Endpoint number (0-31)
- Interface: a logical extension, defined per Endpoint, which permits advertisement of multiple Profiles per Endpoint (to support proprietary extensions, backward compatibility and other application needs)

Kev Relationships:

- Maximum of 30 Endpoints per ZigBee device (0 is reserved to describe the device itself and 31 is reserved for broadcast messaging to all endpoints)
- Maximum of 8 Interfaces per Endpoint
- One Profile described per Interface

UNIVERSITY of Rhode Island