Section 7. Memory System

Development of the ARM Architecture
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= Note that i i of the same can be different

= Cortex-A8 - architecture v7-A, with a 13-stage pipeline
= Cortex-A9 - architecture v7-A, with an 8-stage pipeline
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Cortex-A15 MPCore

1-4 processors per cluster
Fixed size L1 caches (32KB)
Integrated L2 Cache

— 512KB -4MB
System-wide coherency support
with AMBA 4 ACE
Backward-compatible with
AXI3 interconnect
Integrated Interrupt Controller

— 0-224 external interrupts for
entire cluster

CoreSight debug
Advanced Power Management

Cortex™-A15 MPCore

Large Physical Address Extensions (LPAE) to ARMv7-A Architecture

rtualization Extensions to ARMv7-A Architecture

L1 and L2 Caches
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Typical memory system can have multiple levels of cache
— Level 1 memory system typically consists of L1-caches,
— Level 2 memory system (and beyond) depends on the system design

Memory attributes determine cache behavior at different levels
— Controlled by the MMU
— Inner Cacheable attributes define memory access behavior in the L1 memory
system
— Outer Cacheable attributes define memory access behavior in the L2 memory
system (if external) and beyond (as signals on the bus)

Before caches can be used, software setup must be perfornied |
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Cortex-M4 core

Cortex A53 Architecture

Cortex®-A53 « LI Cache, 64B line size

ARM CoreSight™ Multicore Debug and Trace — 2-way set-assoc [-Cache
— 4-way set-Assoc D-Cache

NEON™ i i
with prefetch engine

<n?‘° e"‘. + L2 Cache, 64B line size
Floztll‘r'lg Point —  16-way set-assoc

—  Snoop control unit SCU

ACP  sCU L2 w/ECC (1288 ~ 2MB)

Configurable AMBA®4 ACE or
AMBAS CHI Coherent Bus Interface




Example 32KB cach

Address
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31

Cache line

Cache has 8 words of data in each line

= Each cache line contains Dirty bit(s)

= Indicates whether a particular cache line
was modified by the ARM core

= Each cache line can be Valid or invalid

= Aninvalid line is not considered when
performing a Cache Lookup

v -valid bit  d - dirty bit(s)
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rtex MPCore Processors

« Standard Cortex cores, with additional logic to support MPCore
— Available as 1-4 CPU variants
« Include integrated
— Interrupt controller
— Snoop Control Unit (SCU)
— Timers and Watchdogs
[EESE,

o

AR Corsi” Molicors D snd e Aricecsrs

Eo==c

DN EEEEEEEREE

g p g gy

S g g g
UNIVERSITY ¢

Snoop Control Unit

« The Snoop Control Unit (SCU) maintains coherency between L1 data caches
— Duplicated Tag RAMs keep track of what data is allocated in each CPU’s cache
* Separate interfaces into L1 data caches for coherency maintenance
— Arbitrates accesses to L2 AXI master interface(s), for both instructions and data

« Optionally, can use address filtering
— Directing accesses to configured memory range to AXI Master port 1

Snoop;Com:ol Unit

Memory System Architecture

» Concepts of memory hierarchy
— Quantitative principles of computer design
* Smaller is faster
* Amdahl’s Law:
If we make an enh on a part of a computer, the overall
performance gain is limited by the faction of time when the
enhancement part is used.

« locality properties:
Spatial locality and temporal locality
— Speed gap and the principles suggest memory hierarchy
* Design of cache memories
— Placements or Mapping
« Direct-mapped, set-associative mapped, and associative
— Replacement algorithms and cache consistency

ry System
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Design of Memo

* Memory access time:
Toee = Thie * hit_ratio + T,

« Increase cache hit ratio

* (1-hit_ratio)

miss

* Minimize miss penalty
* Design of cache memories
— Placements or Mapping
— Replacement algorithms
— Write policy and cache consistency




Data Placement: Cache Mapping

« Direct mapped cache:
— Data with address A is mapped to exactly one cache
location
A modulo C, where C is number of lines in the cache
— Simple logic, quick access: each address has 3 fields:
Tag---Index---Offset
« Offset gives a byte in a cache line; Index identifies the cache
line corresponding to the data address, and tag compares with
high order bits of the address to see if they match
— Potential line interferences since many memory blocks
map to a same cache line

Direct-Mapped Cache

Main memory
16 Line Cache
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Hardware Organization of Direct-Mapped

l Tag ] Index l Offset ]

Tag array Data array
a
To CPU Multiplexer
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Fully Associative Mapped Cache

* Direct-mapped cache has high conflict
misses
* Why not place a block at any free location?
-> Fully associative cache
— No restriction as to where to place a cache line

— each address has 2 fields: Tag---Offset

» Cache is accessed by associative search, matching
tags: content addressable memory

— No line interferences, only capacity misses
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Data Mapping of Fully Associative Cache

Main memory
16 Line Cache
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Hardware Organization of Fully Associative Cache

Tag array Data array

To CPU search
j Multiplexer
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Set-Associative Mapped Cache

— A compromise/hybrid of the above two:
associative map within a set and direct-map
among sets

« Flexibility with a set to place data
« Simple indexing logic to identify a set
* d-way associative means d lines in a set
« Cache lines are divided into groups = sets
— Each address has 3 fields: Tag---Index---Offset
« Index here identify which set a line mapped to

— Reduce conflict misses and less complicated/faster than
fully associative

Data Mapping of Set-Associative Cache

Main memory
16 Line Cache
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Hardware Organization of Set-Associative Cache
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Replacement Algorithms

« LFU, LRU, Random, MRU, etc.
* LRU: Least Recently Used
— An LRU counter is associated with each line

— The LRU counters in a set form a logic stack
— Bottom line is replaced

Memory Reference Sequence:

A B C D B

o — b w
> | OO

Ais the LR item to be replace
when CPU accesses E

—
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LRU Counter Implementation

¢ Cache hit

— The LRU counter of the referenced data is set to
maximum

— All other counters that are greater than the original
counter of the referenced data are decremented by 1

« Cache miss
— The line with counter 0 is replaced if the set is full
— All the counters of lines in the set are decremented by 1
— The counter of the new line is set to maximum
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Write Policy

* Write-through
— Every write updates both cached copy and memory
copy

— Write-through guarantee consistency but suffer from
slow writes

* Write back
— Write operations performed in cache only

— Main memory updated only when changed line is
replaced

— Write-back: good performance but potential
inconsistency
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