
1 

1 

Communication Using Serial  
Interfaces: UART and SPI 

Section 6. Serial Communication 

2 

Concepts of Serial Communication 
•  Limitations of Parallel Bus 

–  Clock skew becomes  a serious issue for high speed and long distance 
–  Cost of wire, fewer wires cost less and occupies less space 
–  Cross talk between multiple conductors, affecting signal quality 

•  Serial Communication 
–  Sending data a bit at a time, sequentially, over a communication 

channel 
–  Un-clocked, no clock skew problem 
–  Fewer wires à low cost, more space for better isolation from 

surroundings 
•  Simplex, half-duplex, and full-duplex 

–  Simplex: data can be transferred in only one direction 
–  Half-duplex: data can be transferred in two directions, but one at a time 
–  Full-duplex: data can be transferred in two directions concurrently 

3 

General Procedure and Logic of Serial Communication 

•  Special signal marks 
–  Start bit and stop bit that mark the begin and end of one 

comm. 
•  Parity bit 

–  Error checking and correction 
•  Even parity, odd parity, CRC, Hamming code, etc.  

•  Baud rate 
–  Specifies how fast bit sequence is transmitted 

•  Buffering for transmitter and receiver 

4 

Logic Diagram of Most Serial Interfaces 

Control 

Shift In 

Shift Out 

B 
U 
F 
F 
E 
R 
S 

To CPU 

IRQ/DMA 

Data In 

Data Out 

UART Transmitter Block Diagram	


5 

UART Receiver Block Diagram	


6 



2 

UART Instantiations on Kinetis	


7 

UART Detailed Signal Desciptions	


8 

UART Modes of Operation	


9 

UART Mode Features	

•  Full-duplex serial communication 
•  Standard mark/space non-return-to-zero (NRZ) format 
•  13-bit baud rate selection with /32 fractional divide, based on module clock 

frequency 
•  Programmable data formats 

–  8- or 9-bit data formats including 9-bit with parity 
–  Programmable transmitter output  and receiver input polarity 
–  Ability to select MSB or LSB to be first bit on wire 

•  8 entry Rx and Tx FIFOs available on UART0 and UART1 
•  Hardware flow control support for request to send (RTS) and clear to send (CTS) 

signals 
•  Address match feature in receiver to reduce address mark wakeup ISR overhead 
•  Hardware parity generation and checking 
•  Interfaced to the on-chip DMA 

–  DMA Rx and Tx requests from the UART can be used to move data without processor intervention 

10 

IrDA Mode Features	

•  Selectable IrDA 1.4 return-to-zero-inverted (RZI) format 
•  Programmable narrow pulse transmission and detection  
•  Support IrDA data rates between 2.4 kbits/s and 115.2 kbits/s 
•  Several options for changing RX and TX  sources for UART0 and 

UART1 are controlled by the SIM: 
–  UARTn_RX input from the pin or from CMP0 or CMP1 
–  UARTn_TX output directly from UART or modulated with FTM outputs 
–  These options can be used in any UART mode, but are most useful for IrDA 

applications 

►NOTE: Although all UARTs include IrDA features only UART0 and 
UART1 have the alternate options for the TX and RX sources 
controlled by the SIM	


11 

ISO-7816 Mode Features	

•  Support for ISO-7816 protocol for interfacing with SIM and 

smartcards 
–  Support of T=0 and T=1 protocols 
–  Automatic retransmission of NACK’d packets with programmable retry threshold 
–  Support for 11 and 12 ETU transfers 
–  Detection of initial packet and automated transfer parameter programming 

•  Interrupt-driven operation with seven ISO-7816 specific interrupts 
–  Wait Time Violated 
–  Character Wait Time Violated 
–  Block Wait Time Violated 
–  Initial Character Detected 
–  Transmit Error Threshold Exceeded 
–  Receive Error Threshold Exceeded 
–  Guard Time Violated 

12 



3 

UART interconnect diagram	


13 

SIM Configuration for the UART	


•  SIM controls clock gating for the UARTs (and other modules) 
–  SIM must be initialized to enable the clock for any UART before it can be 

initialized (module registers are not accessible until the clock is enabled). 

•  SIM control TX and RX sources for UART0 and UART1 
–  Default option is a direct connection between the UART and the RX and TX pins 

(no configuration step is needed to use the default) 
–  Alternate options for RX: 

•  CMP0 
•  CMP1 

–  Alternate options for TX: 
•  UART TX output modulated with FTM1 channel 0 
•  UART TX output modulated with FTM2 channel 0 

•  If using an alternate source for RX and/or TX, the SIM should be 
configured to select the source before enabling the receiver and/or 
transmitter in the UART	


14 

UART Operation in Low Power Modes	


15 

Example UART Init	

1. Enable the clock for the port associated with the UART pins you want 

to use (SIM_MCGC5) 
2. Enable UART pins (PORTx_PCRn) 
3. Enable the UART module clock (SIM_MCGCn) 
4. Configure the UART control registers for the desired data format 

–  Number of data bits (UARTn_C1[M] and UARTn_C4[M10]) 
–  Parity and parity type (UARTn_C1[PE,PT]) 
–  MSB or LSB first (UARTn_S2[MSBF]) 
–  Data polarity (UARTn_S2[RXINV] and UARTn_C3[TXINV]) 

5. Configure the baud rate (UARTn_BDH and UARTn_BDL) 
6. Enable the receiver and/or transmitter (UARTn_C2[RE, TE])	


16 

Baud Rate Calculation	


•  The UART has a 13-bit integer divider and a 5-bit 
fractional fine adjust counter that are used to generate the 
UART baud rate. 

UART baud rate = UART module clock/ (16 * (SBR[12:0] + BRFD)) 
 

•  Where BRFD = the BRFA[4:0] field divided by 32	


17 

Baud Rate Calculation Examples	

 The table below gives some baud rate calculation examples using a 
50MHz module clock.	


18 



4 

Polling, Interrupt, or DMA configuration	


•  The UART can be configured to handle data flow by polling status flags, 
generating interrupts, or using the DMA. 

•  Polling is the most CPU intensive, but might make the most sense when 
handling small messages. 

•  The UART status interrupt can be used to decrease CPU loading. Status 
interrupt conditions are: 

–  Transmit data empty 
–  Transmit complete 
–  Idle line (primarily used for multi-drop applications) 
–  Receive data full 
–  LIN break detect 
–  RxD pin active edge (main use is as a CPU wakeup) 
–  Initial character detect (used for ISO-7816 mode only) 

•  The DMA can be used to automatically move receive and/or transmit data to 
reduce CPU loading even more. DMA requests can be generated on: 

–  Transmit data empty 
–  Receive data full 

19 

Example ISO-7816 Init	

1. Enable the clocks for modules you will be using (SIM_MCGCn) : 

–  Port(s) associated with all pins going to the SIM card (UART, GPIO, FTM) 
–  UART0 
–  FTMn 

2. Configure UART, FTM, and GPIO pin functions (PORTx_PCRn). Default states for the GPIOs are: 
–  PD – configure as an input for SIM card detect 
–  RST – configure as output driving low 
–  VPP – configure as an output driving low 

3. Configure the UART control registers for an IS0-7816 compatible data format: 
–  Configure the UART for single wire mode (UARTn_C1[LOOPS] and UARTn_C1[RSRC]) 
–  9-bit mode (8 data bits + even parity)  (UARTn_C1[M, PE, and PT]) 
–  LSB first mode (UARTn_S2[MSBF]) 

4. Enable ISO-7816 mode (UARTn_C7816[ISO_7816E]) 
5. Wait for PD signal to go low indicating a SIM card has been plugged in. 
6. Drive the VPP GPIO high to enable power to the SIM card. 
7. Configure the FTM channel to drive a clock to the SIM card (max 5 MHz). 
8. Configure the UART baud rate. Initial baud rate should be 1/372 the frequency of the FTM channel 

being used as the SIM card clock. (UARTn_BDH and UARTn_BDL) 
9. Drive the RST GPIO high to take the SIM card out of reset. 
10. Enable the receiver and transmitter (UARTn_C2[RE,TE]). 
11. Wait for the initial character to be received.	


20 

Note on Clearing Status Flags	

•  Some of the status and error flags in the UART are cleared by reading 

the S1 register when the bit is set, then reading the data register.   
•  When writing code to clear these flags keep in mind that reading the 

data register while the FIFO is empty will cause the FIFO pointers to 
get out of sync.  

•  If you plan to flush the RxFIFO when some error conditions are 
detected, then we recommend clearing the error flag, THEN flushing 
the FIFO. This way you don’t need to read from the FIFO when it is 
empty in order to clear the flag. 

•  If for some reason you need to read from the RxFIFO when it is 
empty, then flushing the RxFIFO will reinitalize the FIFO pointers.	


21 

UART RS-232 Hardware 
Connections	


22 

ISO-7816 Hardware Connections	


23 

IrDA Hardware Connections	


24 



5 

UART RS-485 Hardware 
Connections	


25 

GPIOC Features	

•  5V tolerant pins on some devices 

–  Use open drain connections to interface to other 5V devices 

•  Pin interrupt and DMA capability 
–  Rising/Falling edges and both edge and level 
–  Each 32 pin port can generate an interrupt or DMA request 

•  Digital glitch filter 
–  Spurious noise filter 
–  Configurable width and clock source 

•  Hysteresis and configurable pull up/pull down device on all input pins 
•  Configurable slew rate and drive strength on all output pins 

–  Reduced noise on output pins 

26 

GPIOC Registers	


27 

Sample Code	


28 


