## Node – 3

vector form

## **Matrix-Vector Form**

• Reconsider the initial simple circuit:



• The node equations were:







 $I_2$ 

• Or, in vector/matrix form





- G is matrix of conductances (reciprocals of R's)
  - Diagonals sum of those connected to a node
  - Off diagonals negative of those between nodes
- v = vector of unknown node voltages /
- I = vector of currents into the nodes
- Solving,  $v = G^{-1} I$





<u>Linearity</u>: for each input, the output is proportional to that input

<u>Superposition</u>: the output due to multiple inputs is the sum of the responses due to each individual input

٧ オーノ + 1-

Example (details on next slide)



KCL for







- Current into node due to source/resistor



Example (see next slide)









$$v_{31} = 93 V$$
  
 $P_{31} = 279 W$ 

#### 39.4 V

### **Practice problem:** find $v_a$





$$-\frac{95}{9}, \frac{185}{9}, \frac{25}{18}, -\frac{175}{4}V$$

# **Practice problem:** find the power dissipated in the $10 \Omega$ resistor $v_{10} = 60 V$

 $P_{31} = 360 W$ 



### **Practice problem:** find *i*



