

•

Phasors – 1

introducing L & C

So Far – Resistive DC Circuits

- Circuit variables
 - Voltage, current, and power
- 2-terminal components
 - Passive sign convention
 - Independent and dependent sources
 - Resistors

- Basic tools:
 - KVL, KCL, Ohm's Law
 - Extensions:
 - Series/parallel R
 - Voltage/current division
- Powerful analysis tool
 Node method

What's Coming

- Two new devices :
 - Inductors (L)
 - Capacitors (C)

 Time varying voltages and currents Steady-state analysis: - Assumes all voltages and currents are sinusoidal - Direct extension of

methods to date using complex numbers

Transient analysis:)

- Voltages and currents that disappear with time
- Exponential forms

- Notes:
 - If i(t) jumps then v(t) would be infinite $\rightarrow i(t)$ cannot jump, it is continuous
 - If i(t) = a constant then $v(t) = 0 \rightarrow$ inductor acts like a short circuit

- C (unit is Farads, F)
- V-I rules:

- Notes: - If v(t) jumps then i(t) would be infinite $\rightarrow v(t)$ cannot jump, it is continuous
 - If v(t) a constant then $i(t) = 0 \rightarrow$ inductor acts like an open circuit

Example: Find the voltages v_1 and v_2 for this circuit assuming constant voltage/current conditions.

Power/Energy for L & C

Energy $w(t) = \int p(s) ds = \int v(s) i(s) ds$

•

- Capacitor:

$$w(t) = \int v(s) C \frac{dv(s)}{ds} ds = C \int v(s) dv(s) = \frac{C v^2(t)}{2}$$

Series/Parallel Combining

• Inductors – just like resistors

• Capacitors – just the opposite of resistors

$$C_{series} = \frac{C_1 C_2}{C_1 + C_2} \qquad \begin{array}{cccc} C_1 & C_2 \\ \hline \\ \hline \\ C_{parallel} = C_1 + C_2 \end{array}$$

Example: find the equivalent inductance

Example: find the equivalent capacitance

More Realistic Device Models

Practice problem: If a 10 μ *F* capacitor's voltage is $v(t) = 5(1 - e^{-10t})$ V consider it's power as a function of time. When is the power a maximum? What is that maximum? How much energy has been stored in the capacitor at this point?

 $0.693 \ sec, 625 \ \mu W, 12.5 \ \mu J$

Practice problem: A voltage of $20(1 - e^{-500t})$ volts appears across the parallel combination of a 100 μF capacitor and a 10 ohm resistor. What is the total power absorbed the the parallel combination as a function of time?

 $40 - 60e^{500t} + 20e^{-1000t} W$

Practice problem: Find the inductor current and capacitor voltage assuming constant voltage/current conditions.

 $\frac{1}{3}$ A, 4 V

