Phasors – 8

more AC power; start design

Improving AC Power Delivery

• Real average power is

$$P = \frac{VI}{2}\cos\theta = V_{RMS} I_{RMS} \cos\theta$$

- The goal is to get θ close to 0 (equivalently, S close to real
 - Load close to resistive

A Typical Example – Power Distribution

- Load Apparent power is $P = V_{RMS} I_{RMS} = 240 * 9.6 = 2.3 kVA$
- Real power = 1.5 kW, so power factor = $\frac{1.5}{2.3} = 0.65$
- Can we improve this? e.g. get current below 7 amps?

- Since a typical load is inductive, using the power factor value of 0.65 then the model is likely to be: $|Z| = \frac{240}{9.6} = 25 \Omega$ Z = R + jX= 16.25 + j19
- Try to improve matters with a shunt capacitor, *C*, so $Z_{new} = Z || \frac{1}{j\omega C}$

$$Z_{new} = Z || \frac{1}{j\omega C} = \frac{Z \frac{1}{j\omega C}}{Z + \frac{1}{j\omega C}} = \cdots$$
$$= \frac{R(1 - \omega CX) + \omega RCX}{(1 - \omega CX)^2 + \omega^2 R^2 C^2} + j \frac{X(1 - \omega CX) - \omega R^2 C}{(1 - \omega CX)^2 + \omega^2 R^2 C^2}$$

• Want Z_{new} to be real for best performance $\rightarrow C = 80.6 \, \mu F$

-
$$Z_{new} = 38.46 \Omega$$
 and now ammeter reads 6.24 A

Shunt C yields higher voltage at the load and less heat in the wires

	$R_L = 0$	$R_L = 0.1 \Omega$	$R_{L} = 0.1 \ \Omega \ C = 80.6 \ \mu F$
Z_L	16.25 + <i>j</i> 19 Ω	1 <mark>6.25 + </mark> <i>j</i> 19 Ω	38.46 Ω
IL	9.6 A	9.55 A	6.24 A
V _L	240 V	238 V	239 V
P _{Load}	1500 W	1480 W	1500 W
<i>P_{Line}</i>	0	18.2 W	7.79 W

Analysis vs Design

 Voltage division analysis yields

Design: How do we choose R for $V_o = 10$ volts? And is this even possible?

Phasor Circuit Design

- Choose components to achieve a certain goal.
- Example:

source ? If so, what is the current's amplitude?

- Considerations:
 - Is the request even possible? How many degrees of freedom do you have versus the number of quantitative goals? Is more than one solution possible?
 - For our example, what range of angles is even possible?

$$-\frac{1}{2n^{2}}\left(\frac{160-\frac{1}{5000}c}{90}\right) = -45^{\circ}$$

$$160-\frac{1}{5000}c = 90$$

$$160-\frac{1}{5000}c = 47^{\circ}$$

$$\frac{1}{5000}c = 7^{\circ}$$

$$\frac{1}{70.5000}c = 7^{\circ}$$

Practice problem:

- Find the average power dissipated by the line
- Find the shunt capacitance to make the load appear purely resistive
- Find the load resistance resulting from this shunt capacitance
- Find the average power dissipated by the line with the shunt capacitor installed

207 W; -501Ω ; 1.67 $k\Omega$; 18.6 W

Practice problem: for the same circuit, Can you choose a capacitor C so that its steady state voltage v has a phase angle of -45° relative to the source ?

