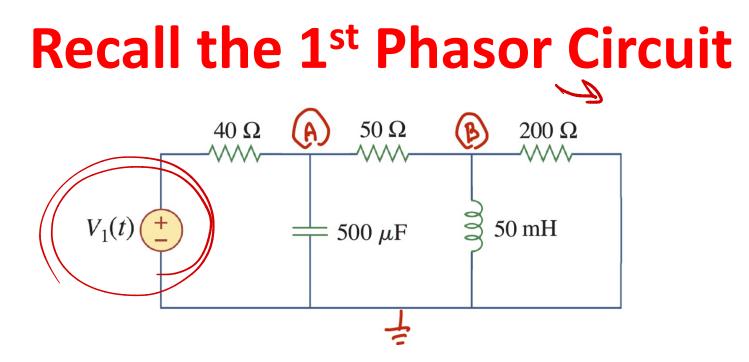
1st Order Transients – 1

concepts

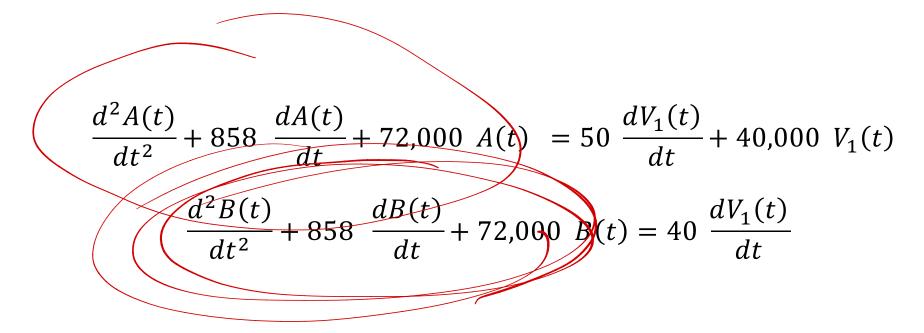
Where are we?

- Resistive circuits:
 - Simple elements; Kirchhoff's and Ohm's Laws
 - Nodal analysis
- Inductors and capacitors
 - Steady state (phasor) analysis
- Op amps
- Circuit theorems:
 - Thevenin/Norton, maximum power
- Transients:
 - 1st order circuits
 - 2nd order circuits
- Mesh analysis



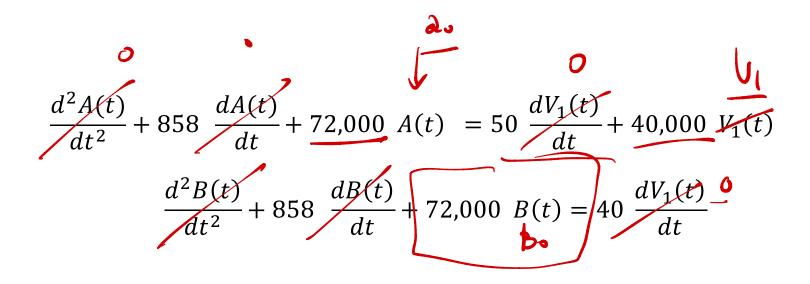
• Characterized by the 2nd order differential equations

$$\frac{d^2 A(t)}{dt^2} + 858 \frac{dA(t)}{dt} + 72,000 A(t) = 50 \frac{dV_1(t)}{dt} + 40,000 V_1(t)$$
$$\frac{d^2 B(t)}{dt^2} + 858 \frac{dB(t)}{dt} + 72,000 B(t) = 40 \frac{dV_1(t)}{dt}$$



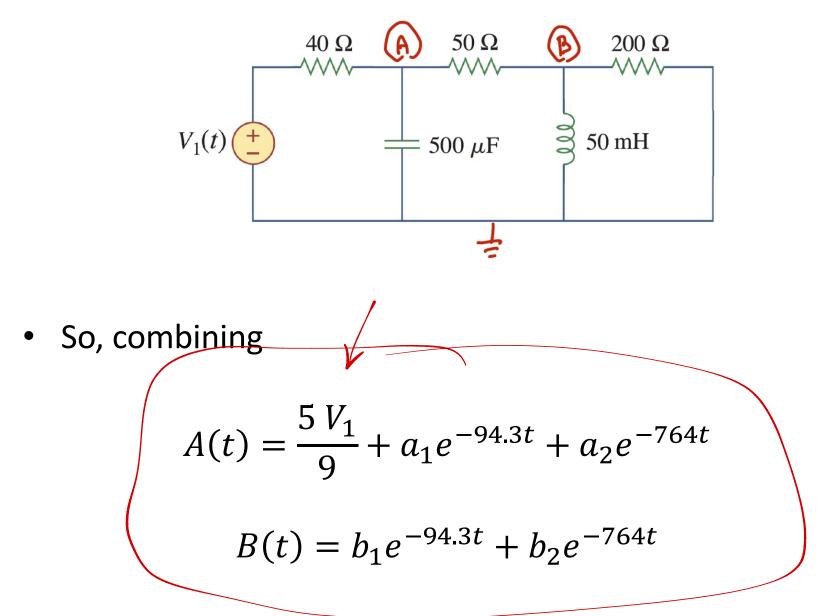
Homogeneous solutions are exponentials

$$A_{homogeneous}(t) = a_1 e^{-94.3t} + a_2 e^{-764t}$$
$$B_{homogeneous}(t) = b_1 e^{-94.3t} + b_2 e^{-764t}$$



• Now, imagine that $V_1(t) = V_1$ is a constant (DC) voltage source; then the particular solutions are both constants

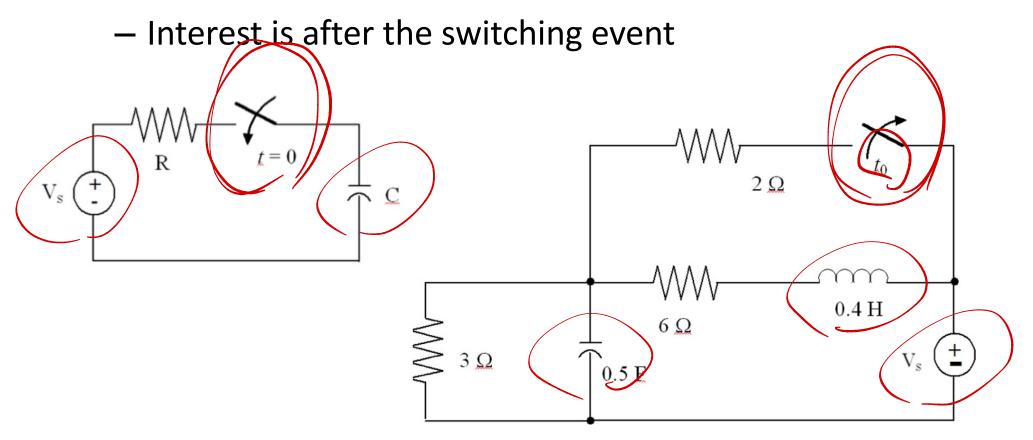
$$A_{steady-state}(t) = a_0 \left(= \frac{5 V_1}{9} \right)$$
$$B_{steady-state}(t) = b_0(=0)$$



Still has unknown constants

Transient Analysis

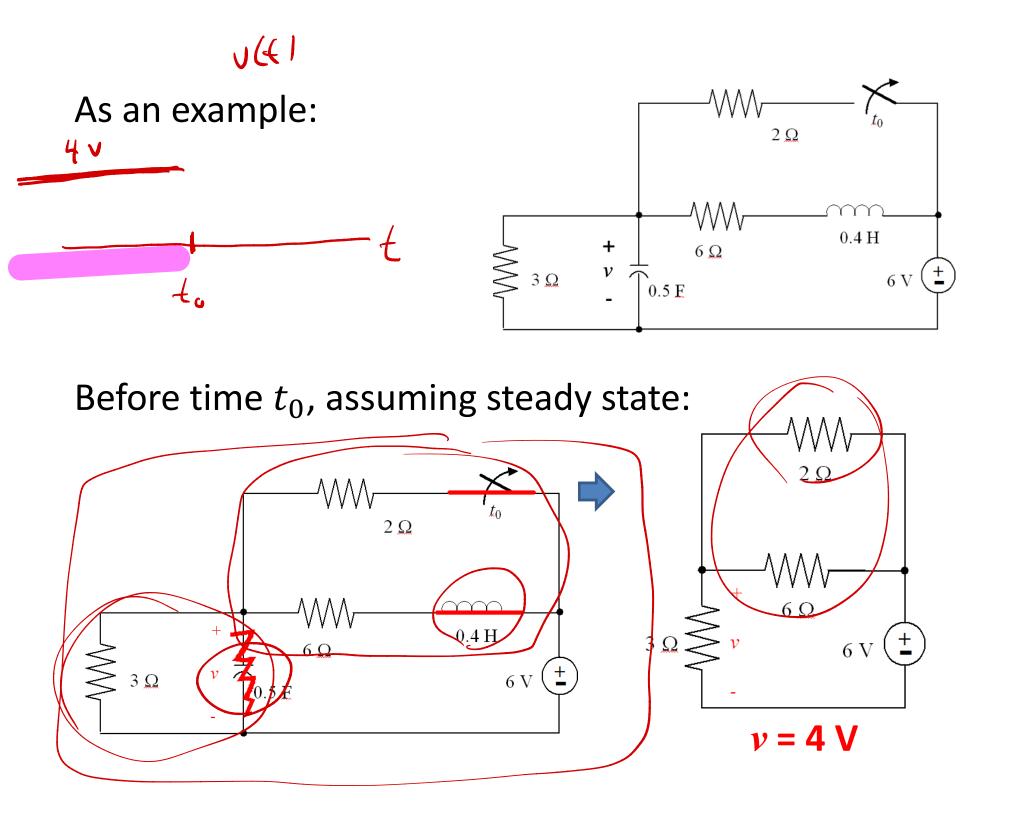
- Short-term response of a circuit to "change", typically a switching event:
 - An actual switch or sources turning on/off

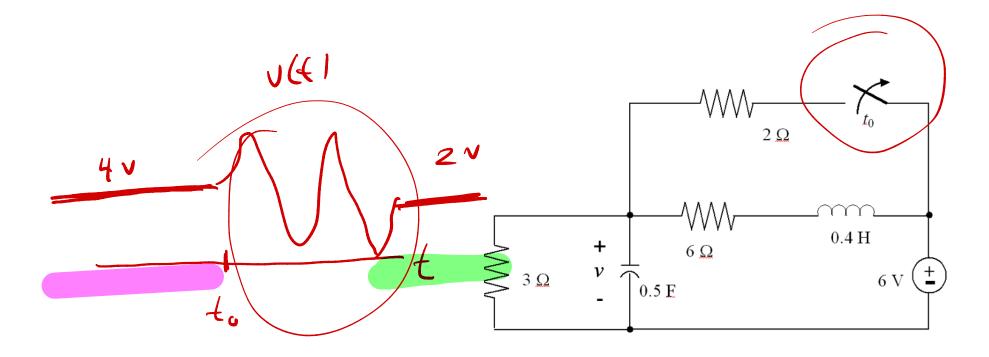


 We consider the DC source case so that the forced portion is a constant; specifically, in steady state, all voltages/currents are constants, so

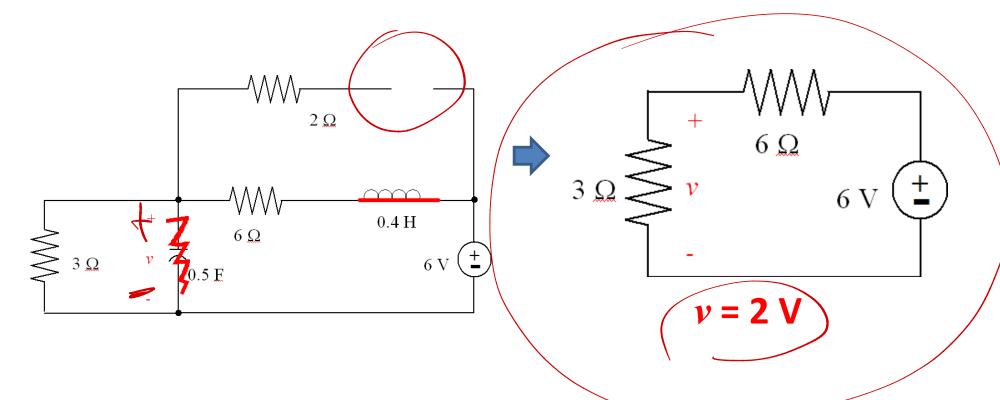
$$v_L = L \frac{di_L(t)}{dt} = 0 \rightarrow \text{inductors act as short circuits}$$

$$i_C = C \frac{dv_C(t)}{dt} = 0 \rightarrow \text{capacitors act as open circuits}$$

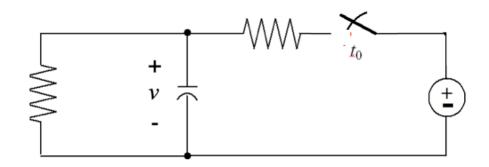




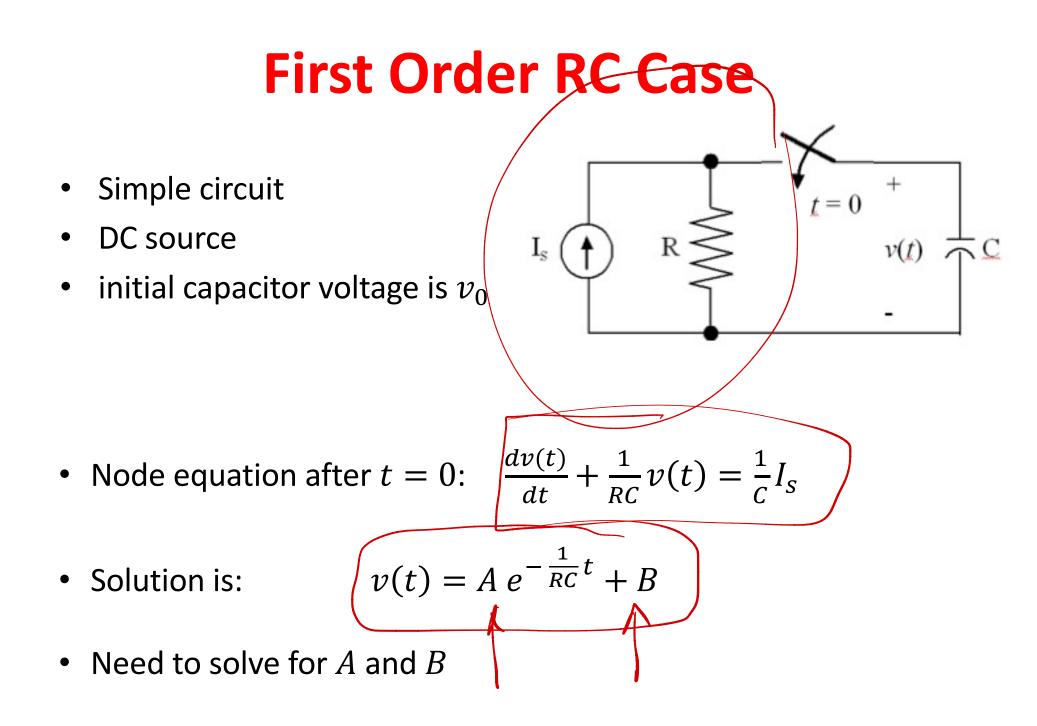
And a long time after time t_0 , steady state again:

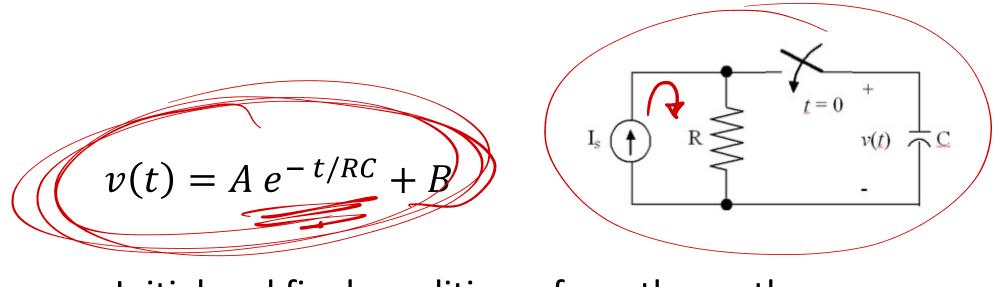


-VWV The transient is t_0 2Ω what happens in between these WW \cap $0.4 \mathrm{H}$ + 6Ω \sim $\overline{\uparrow}_{0.5 \text{ E}}$ v 3Ω + $6 \mathrm{V}$ v (our topic of interest) 4 н time Т t₀+?? <u>t</u>₀



- Terminology used:
 - <u>Natural response</u>: circuit with no sources, initial conditions only; usually all variables go to zero
 - <u>Step response</u>: circuit with DC sources, zero initial conditions
 - Combined response = sum of both
- Useful facts:
 - <u>Inductor</u>: a short for DC; current cannot jump (is a continuous function)
 - <u>Capacitor</u>: an open for DC; voltage cannot jump (is a continuous function)



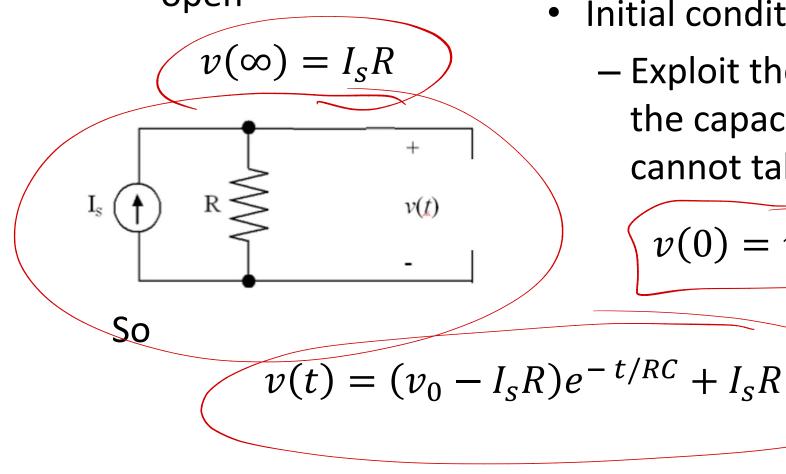


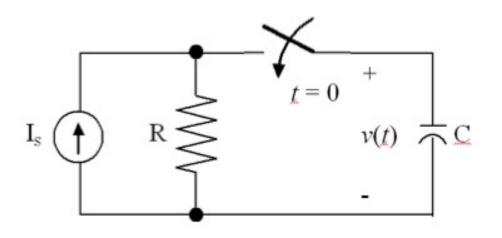
- Initial and final conditions: from the math v(0) = A + B $v(\infty) = B$

– So, solving

$$v(t) = (v(0) - v(\infty))e^{-t/RC} + v(\infty)$$

- Final value \bullet
 - Exploit the fact that in steady state the capacitor acts like an open

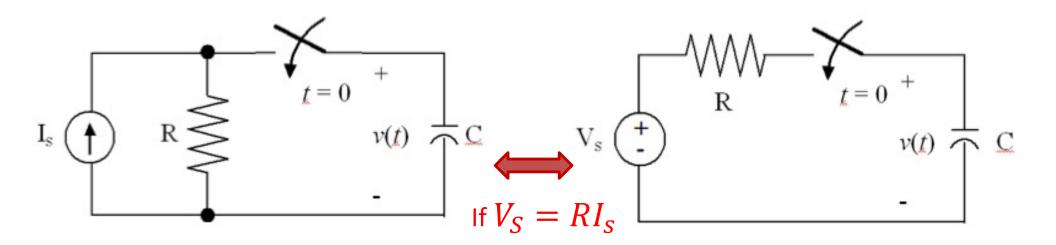




- Initial condition
 - Exploit the fact that the capacitor voltage cannot take a jump

 $= v_0$ v(0)

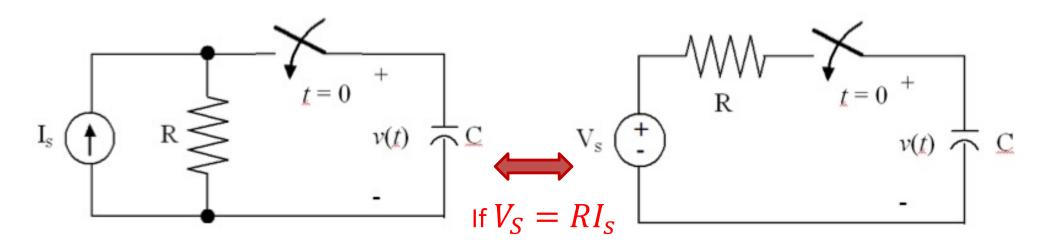
• Consider a transformation:



• With result

$$v(t) = (v_0 - I_s R)e^{-t/RC} + I_s R$$
$$= (v_0 - V_s)e^{-t/RC} + V_s$$

• Consider a transformation:



• With result

$$v(t) = (v_0 - I_s R) e^{-t/RC} + I_s R$$
$$= (v_0 - V_s) e^{-t/RC} + V_s$$