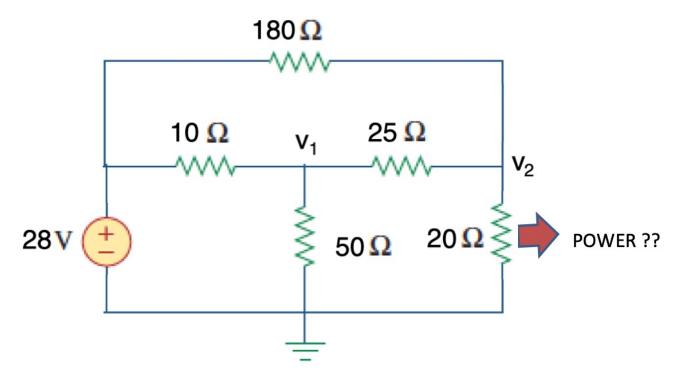
Theorems – 4

maximum power transfer

Power Transfer

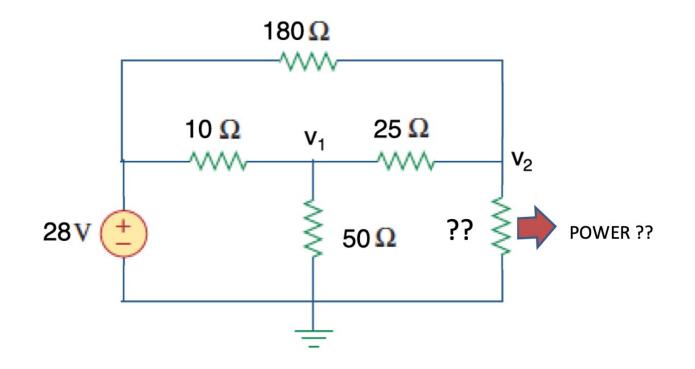


• How much power is dissipated in the 20 Ω resistor? — Method: node analysis $\rightarrow v_0 = 10$ V

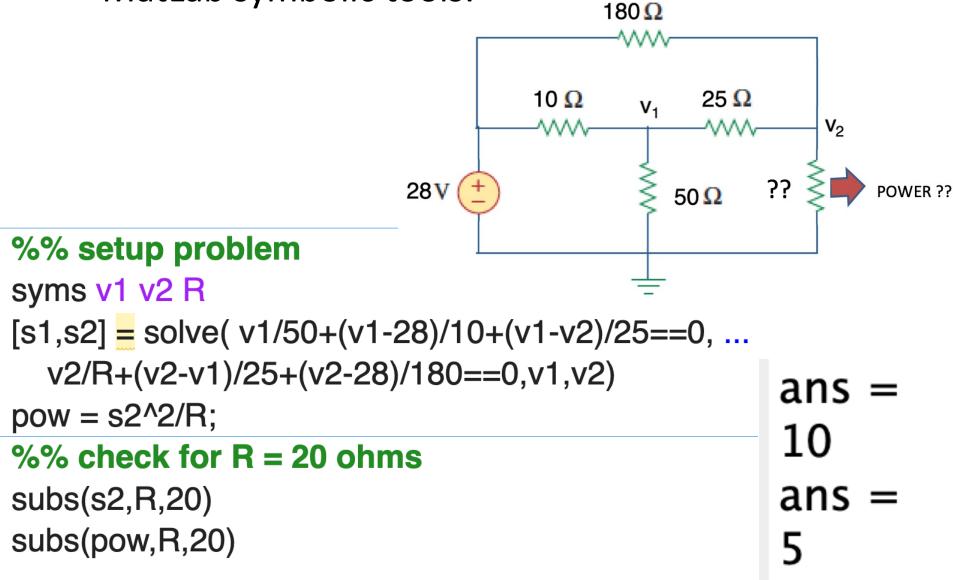
– Method: node analysis
$$\rightarrow v_2 = 10 \text{ V}$$

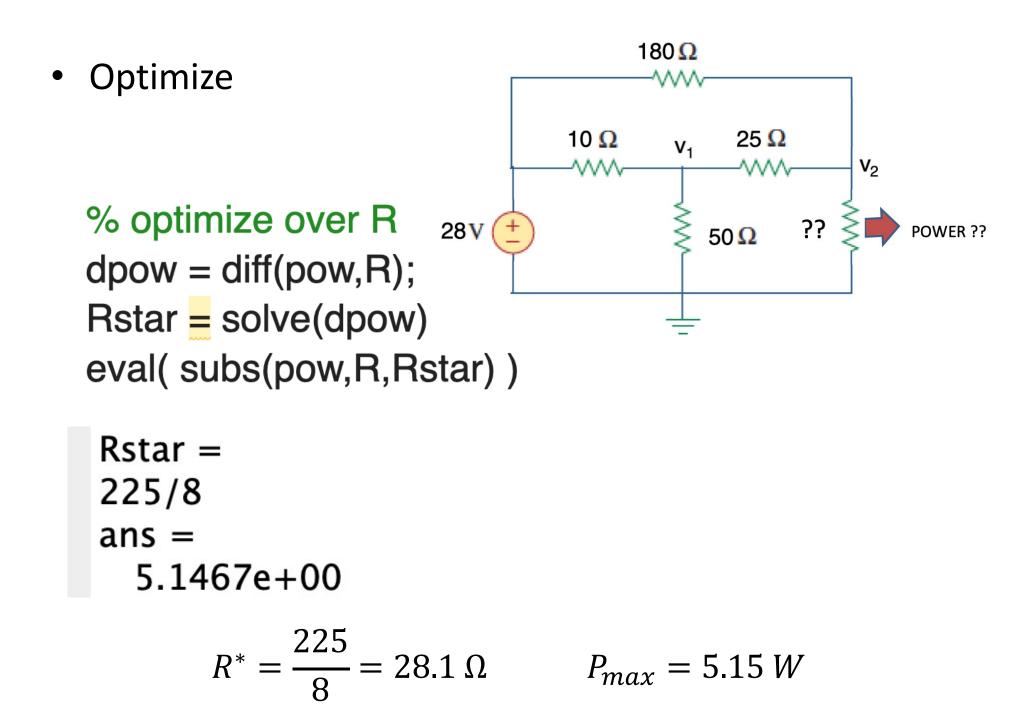
- Power calculation
$$P = \frac{v_2^2}{20} = \frac{10^2}{20} = 5$$
 W

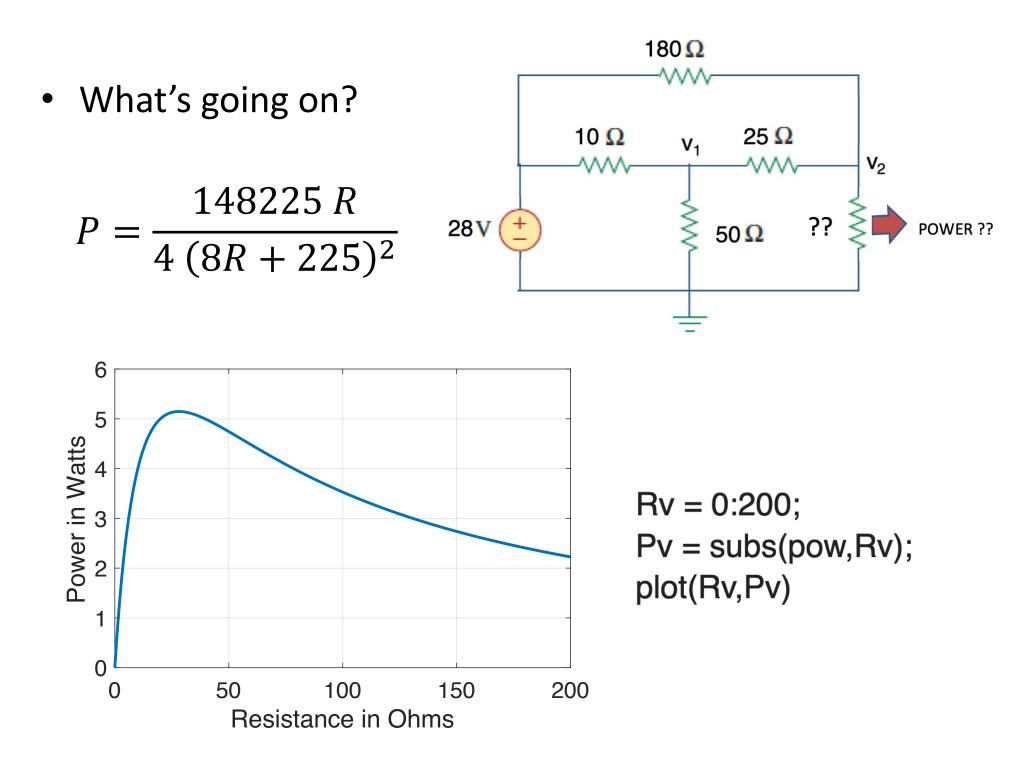
• Question – if the resistance was larger/smaller than $20 \ \Omega$ could it take more power from the circuit?



• Approach 1 – solve for power in terms of R

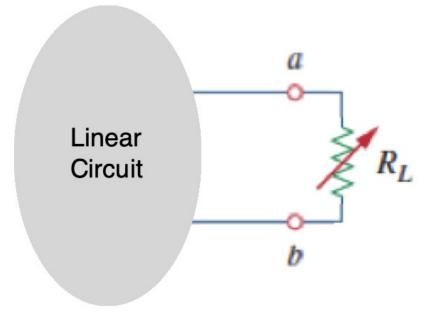


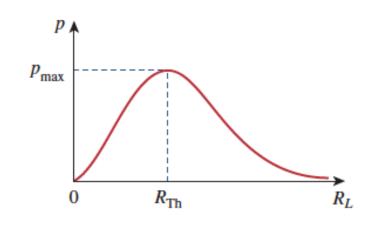


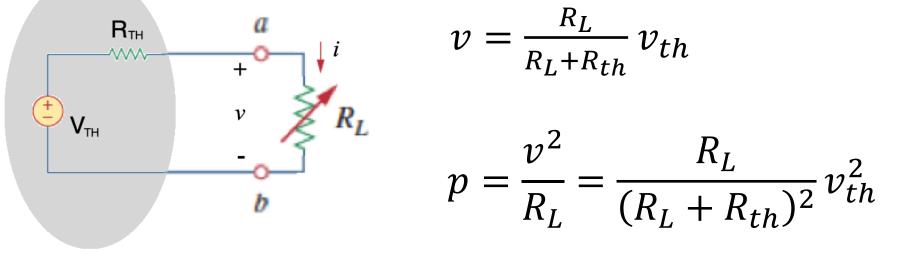


Maximum Power Transfer

- Consider connecting a "load" resistance, R_L, across two points of a circuit
- What happens as it varies?
 - Current
 - Voltage
 - Power



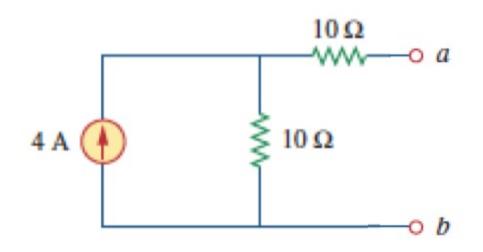




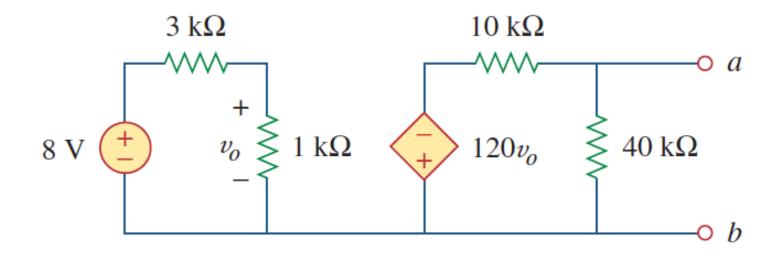
• $\frac{\partial p}{\partial R_L} = 0$ yields a max of $P_{max} = \frac{V_{th}^2}{4R_{th}}$ when $R_L = R_{th}$

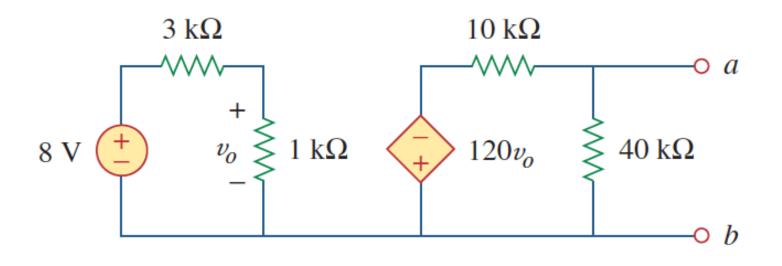
Example: find a load resistance to dissipate maximum power

20 Ω, 20 W

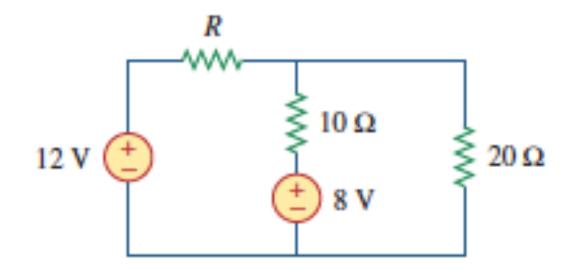


Example: find the load that dissipates maximum power



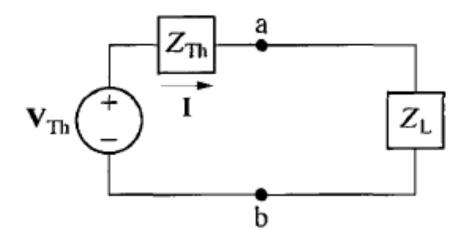


Example (trick): find R to maximum the power delivered to the 10 ohm resistor



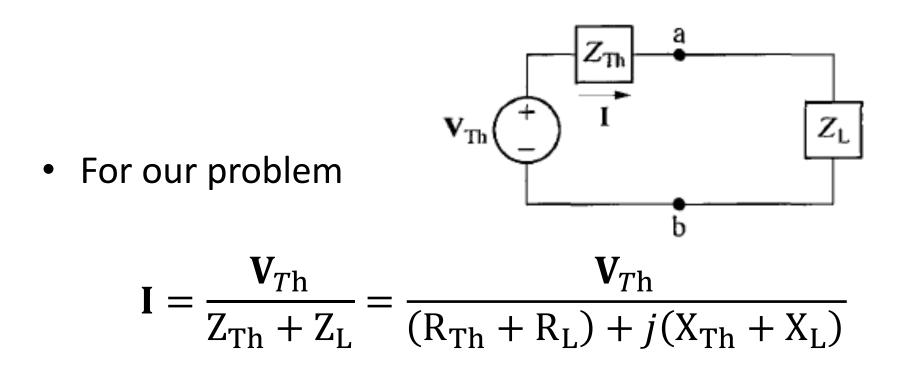
Maximum AC Power

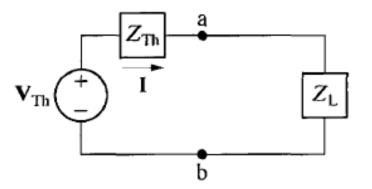
• Given a phasor Thevenin model, how do we get maximum power to Z_L ?



• For sinusoidal sources and RLC circuits, power is

$$S = \frac{|\mathbf{I}|^2}{2} Z_{\mathrm{L}} \qquad P = \frac{|\mathbf{I}|^2}{2} R_{\mathrm{L}}$$





• So

$$P = \frac{|\mathbf{I}|^2}{2} R_{\rm L} = \frac{1}{2} \frac{|\mathbf{V}_{\rm Th}|^2 R_{\rm L}}{(R_{\rm Th} + R_{\rm L})^2 + (X_{\rm Th} + X_{\rm L})^2}$$

- We can optimize this using calculus
- How depends upon which parameters we can change

$$P = \frac{1}{2} \frac{|\mathbf{V}_{\text{Th}}|^2 R_{\text{L}}}{(R_{\text{Th}} + R_{\text{L}})^2 + (X_{\text{Th}} + X_{\text{L}})^2}$$

• Example 1 (unusual): both R_L and X_L are free to choose

$$\frac{\partial P}{\partial X_L} = 0 \qquad \frac{\partial P}{\partial R_L} = 0$$
$$Z_L = Z_{\text{Th}}^*$$
$$|\mathbf{V}_{\text{Th}}|^2$$

$$P_{max} = \frac{1 \cdot Th}{8R_{Th}}$$

$$P = \frac{1}{2} \frac{|\mathbf{V}_{\text{Th}}|^2 R_{\text{L}}}{(R_{\text{Th}} + R_{\text{L}})^2 + (X_{\text{Th}} + X_{\text{L}})^2}$$

• Example 2 (more common): *X*_L is fixed, but *R*_L is free to choose

$$\frac{\partial P}{\partial R_L} = 0$$

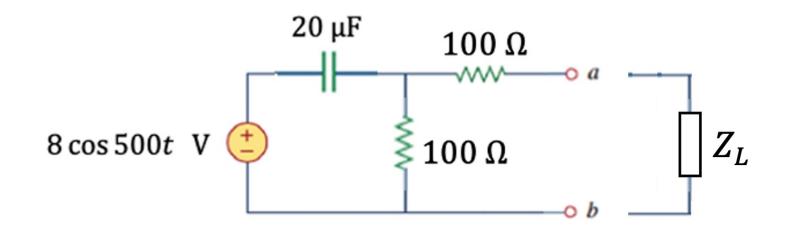
$$R_{L} = \sqrt{R_{Th}^{2} + (X_{Th} + X_{L})^{2}}$$

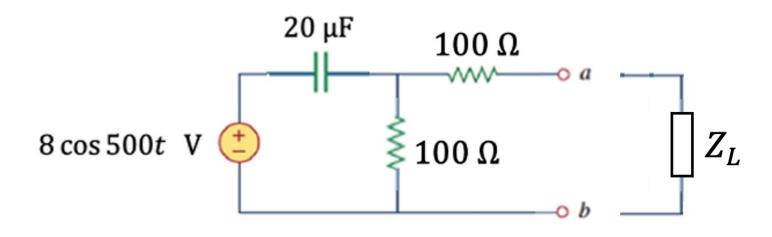
$$P_{max} = \cdots$$

$$P = \frac{1}{2} \frac{|\mathbf{V}_{Th}|^2 R_L}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2}$$

- Other scenarios:
 - Fixed angle on Z_L
 - Limits on R_L and X_L

Example: find Z_L to maximize the power transfer

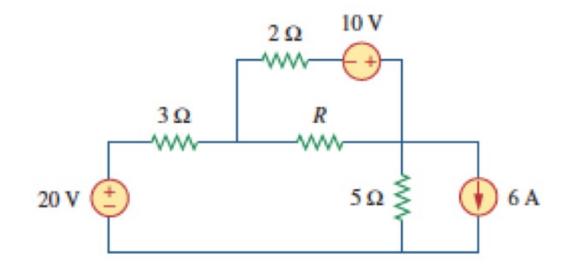




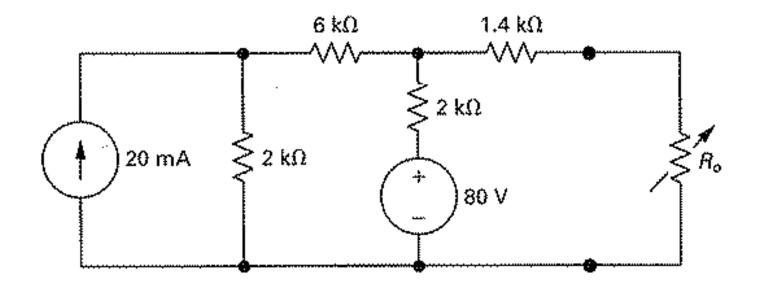
Since $V_{Th} = 4\sqrt{2} \cos(500t + 45^\circ) V$ and $Z_{Th} = 150 - j50 \Omega$, then $Z_{Th} = 150 + j50 \Omega = 150 \Omega$, 0.1 *H*, and P = 26.7 mW

1.6 $\Omega, \frac{5}{8} W$

Practice problem: maximize the power to *R*

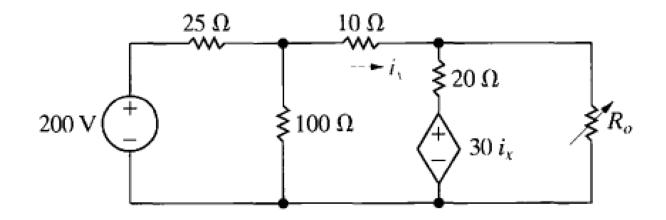


Practice problem: maximize the power to *R*_o

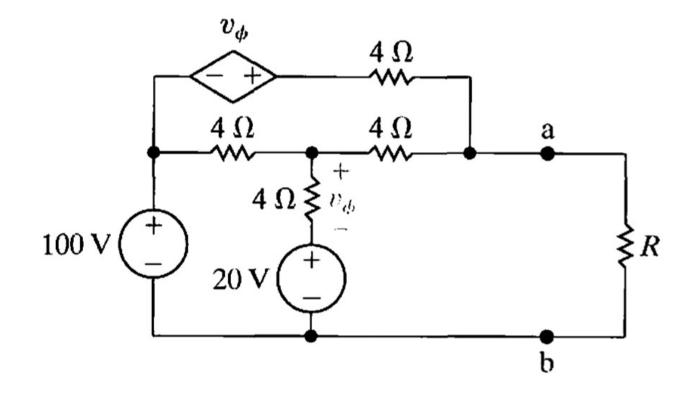


7.5 Ω, 333 W

Practice problem: maximize the power to *R*_o



Practice problem: maximize the power to *R*



 $4 k\Omega$, 9 mW

Practice problem: maximize the power to R_L

