Mesh Analysis

concept; examples

General Methods to Analyze Circuits

- What to do first?
 - KVL?
 - KCL?
 - Ohm's Law?

- We need a more direct approach:
 - Nodal analysis (KCL based)
 - Mesh analysis (KVL based, NOW)

Mesh Analysis

• Mesh refers to the simple loops visible in a circuit

• Method – define the "mesh" currents $v_1 \stackrel{t}{\leftarrow} \stackrel{R_1}{\leftarrow} \stackrel{R_2}{\leftarrow} \stackrel{R_2}{\leftarrow} \stackrel{t}{\leftarrow} v_2$ • Write KVL on these meshes

$$v_1 + v_3 = V_1$$

 $v_3 = v_2 + V_2$

 Use Ohm's Law for voltages on resistive branches

$$v = R i$$

- Careful on current directions
- Result is a set of simultaneous equations to solve

Example (details on next slide)

$$60 - 12i_1 - 12(i_1 - i_2) = 0$$

-12(i_2 - i_1) - 6i_2 + 24 = 0

 $24i_1 - 12i_2 = 60$

$$-12i_1 + 18i_2 = 24$$

$$i_{1} = \frac{\begin{vmatrix} 60 & -12 \\ 24 & 18 \end{vmatrix}}{\begin{vmatrix} 24 & -12 \\ -12 & 18 \end{vmatrix}} = \frac{1368}{288} = 4.75 \text{ amps}$$
$$i_{2} = \frac{\begin{vmatrix} 24 & 60 \\ -12 & 24 \end{vmatrix}}{\begin{vmatrix} 24 & -12 \\ -12 & 18 \end{vmatrix}} = \frac{1296}{288} = 4.5 \text{ amps}$$

Example:

$$i_L = 6.26 A$$
, $i_T = 3.69 A$, $i_B = 1.96 A$

Extensions

- Treat dependent sources the same way as in node analysis
- Current sources are either trivial or require a "supermesh"

• Works for phasors

Limitation

Circuit must be"planar"

Node vs Mesh?

• Non-planar \rightarrow node only

- Could count # of nodes/loops; select smaller
- Personal preference

Example:

$$i_1 = 1.22 A, i_2 = 0.174 A$$

$$i_o = \frac{105}{104} A$$

Example: find *i*

Practice problem: Which of these circuits are planar (i.e. would allow for mesh analysis)?

Practice problem: Find the currents i_1 , i_2 , and i_3 .

Practice problem: Find the current i_0

Practice problem: Find the current i_0

$$i_0 = \frac{45}{26} A$$

Practice problem: Find the currents i_1 , i_2 , i_3 , and i_4

Practice problem: For the circuit below which method appears easier, mesh or node? Use your preference to find the power dissipated in the 10 k Ω resistor. 100 μW

Practice problem: Find $v_0(t)$ assumin that $v_1(t) = 120 \cos(100t + 90^\circ)$ V and $v_2(t) = 80 \cos 100t$ V

 $v_o(t) = 29.9 \cos(100t + 46^\circ) V$

Practice problem: Find the power in the 10 Ω resistor 0 W

i = 1.18 A

Practice problem: Find *i*

 $i_o = 0.4 A$

Practice problem: Find i_0

