
university of rhode island

Using VHDL on the Mentor Graphics Tools

� A Tutorial �
Version ����

December �� ����

Gus Uht

� Introduction

Greetings and welcome to the fun��lled world of VHDL at URI�
For the newcomer� VHDL stands for �VHSIC Hardware Description Language�� with VHSIC standing

for �Very High�Speed Integrated Circuit�� VHDL was originally developed a decade or two ago as part of
the Defense Department	s VHSIC program� VHDL is now standardized by the IEEE� and is one of the most

if not the most� common hardware description languages in use in the US today�

Before reading this document� you should be familiar with the basic Mentor Graphics setup in the ELE
department at URI� as well as the ELE computing environment 
especially the use of the UNIX operating
system�� These topics are covered in other documents�

I must emphasize that this is not a tutorial or reference on VHDL itself� Many textbooks cover VHDL�
and there are some online tutorials from other schools that may help� including�

http���www�erc�msstate�edu��reese�vhdl synthesis�index�htm

http���www�eng�auburn�edu�department�ee�mgc�vhdl�html

Further� there is online Mentor help via Bold Browser� accessible by entering�
bold browser

The primary online documents that are of use are� Getting Started with QuickHDL and VHDLwrite 
Modules
 and � in general� and pages ix to xi� � to ��� ��� to ���� and ���� to ���� in particular� this tutorial
di�ers in some details from that in pages �� to ����� and the QuickHDL User�s and Reference Manual�

The purpose of this document is to guide the �rst�time user through the maze of Mentor documents�
tools and systems to be able to write VHDL descriptions� compile them� and simulate them� Rather than
deal with all of the options� I	ll simply present a quicky tutorial� elucidating on some of the more interesting
options�

There are two main programs used for VHDL� Design Architect 
DA� and QuickHDL� Design Architect
is used both to enter VHDL code and to compile it� QuickHDL is then used to simulate it� Note that it is
possible to combine both VHDL� and schematic�based designs� this is a bit complex� so it will be covered
in another document� Also note that Mentor also supports the use of Verilog� the other major hardware
description language� However� since this support was just added� Verilog is much less seamlessly integrated
into the Mentor suite than VHDL� so I recommend using VHDL�

I will now go through a sample VHDL entry� compilation and simulation session� The VHDL modelling
of a simple multiplexor will be used as an example�

� Entering and Compiling VHDL

You can use either the built�in VHDL editor of Design Architect� or your own favorite text editor� In the
latter case� you will have to import the text �le� Using the built�in editor has a couple of advantages� 
�
it is tightly coupled with the compiler� lines with errors can be immediately highlighted and located� 
��
pre�formatted VHDL code templates can be used to build your code on� e�g�� the skeletal components of an
entity can be inserted into your program by calling up the entity template�

I	ll now go through the required steps� assuming that the built�in editor is used�

� Within your �project� directory� create the following two directories� using either Unix or Design
Manager commands�

����project�qhdl n�src





����project�qhdl n�work

The src directory will hold the source code for all of your VHDL descriptions� while the work directory
is the library used to hold the compiled code�

�� cd to the qhdl n directory� and invoke DA�
da

Once in DA� make sure you are working from the correct directory� by clicking and navigating from
the drop�down menus on the menu bar�

MGC�Location Map�Set Working Directory�������qhdl n�

Also set the display by clicking�
MGC�Setup�Session����Up Down Tiling�

�� You	ll now enter a sample VHDL description of a one�line ��to� MUX� Click the �OPEN VHDL�
palette button� 
This is on the �Session� palette�� An entry panel will come up� Set the �VHDL
Source Name� to�

����qhdl n�src�muxentity

click �Yes� on �Options�� and click the �New Numbered Fileset� button� Note� when you reopen the
�le� click on �Use Existing Type�� instead�

A window will open into which you can either directly enter your VHDL� or copy it from another �le
that you created earlier� For now� enter the following VHDL entity description�

��one bit MUX

library ieee�

use ieee�std	logic	

���ALL�

entity muxto
 is

port�

signal s�zero�one� in std	ulogic�

signal y� out std	ulogic��

end muxto
�

Save it via the menu bar	s �File� drop�down menu�

�� OK� let	s compile it�


a� First� in the vhdl palette� click on �Show Current Maps�� this will display the mappings be�
tween the logical names of the libraries and their physical path names� Don	t worry about the
�quickhdl�ini� or the �work� warnings� Ensure that �work� is mapped to ���work��


Note� if you do any involved VHDL work� you will probably want to add a logical link to
the absolute� not relative� pathname of your library� This is a two�step process� First� copy the
default ��usr�local�packages�MGraphics�lib�quickhdl�ini� initialization �le to your qhdl n

directory� keeping the same �le name� You then add the new mapping to this �le� either by editing
it with an ASCII text editor �carefully� to add one line for the new mapping� or by using the
�Map���� command on the DA menu bar	s �QuickHDL� drop�down menu �this appears when DA
has no subwindows open�� In the latter case� click on �set�� then enter a logical name you will use
for your library �arbitrary� in the �rst box� followed by the full path name of the physical location
of the library� e�g�� �����project�qhdl n�work���

Close the display�


b� Next� in the Palette� click on �Set Compiler Options����� In the panel� set the Work Library
to� ����qhdl n�work� set the QuickHDL Options for �Constraint Checking�� �VHDL��� and
�Explicit Scoping�� also� click the �Simulation� button and set �Conditional Compilation� to
�All�� then click �OK��

�




c� Now� actually do the compilation� by clicking �Compile�� in the Palette� A new window will
come up for the compiler itself� in which any errors will be indicated� Ignore the Warning about
�quickhdl�ini�� 
You might try introducing an error� like changing signal to signa� to see how
this works� The neat thing is that if you click on an �ERROR����� message� and then click the
�Highlight� button� the source line in question will be shaded yellow��


d� Once you have compiled with no errors� close the source window� the compilation window will
then also close automatically�

�� OK� we	ve got an entity� let	s get an architecture� Enter the following into a new VHDL �le called�
����qhdl n�src�muxarch� using the same approach as with the entity �le�

��my first architecture

architecture first of muxto
 is

begin

y �� one when �s��
�� else zero�

end first�

Now compile it� following the same steps you did as above for the entity �le� 
You may have to reset
the simulator options��

Note� recall that one of the features of VHDL is its ability to have multiple architectures for the same
entity 
the latter being the I�O sepci�cation of the design�� Normally the architecture
s� are compiled
after the entity� If a change is made to an architecture� neither the entity nor other architectures need
be recompiled� For simulation� a single architecture of an entity must be chosen to simulate�

� VHDL Simulation

At this point� you can simulate your new VHDL MUX directly with the QuickHDL simulator� To invoke it�
type qhsim on a Unix command line 
from the ����qhdl n directory�� or double�click its button in Design
Manager 
DMGR�� 
Note� to keep the execution time down� you might want to exit DA �and DMGR���

In the �Startup� window� select the desired library 
�work��� entity 
�mux�to�� and architecture

��rst�� 
note� recall you can have more than one architecture for an entity� so in general you can make the
selection here of which to test�� Then click on the �Load� button�

Now� qhsim has many windows� To see them all� type
view �

in the 
main� simulator window� See the documentation starting at page �� in the QuickHDL User�s and

Reference Manual for a complete description of the di�erent windows�
To get you started� we	ll do a quicky simulation� focussing on the �Signals�� �Wave� and �List� windows�

Normally� you can input stimuli from a �le� Here� we	ll do it manually� via the �Signals� window�

� First� we have to get the signals to appear in the Wave and List windows� Do this by clicking the
following from the drop�down menus in the menu bar of the Signals window�

Wave�Signals in region

followed by�
List�Signals in region


Alternatively� single signals could have added��

�� Now� we	ll create the stimulus on the three MUX inputs �s�� �zero� and �one�� This is done via
repeated use of the �Force� drop�down menu in the Signals window� First� select �s�� Then� click on
�Force�� and enter the following in the dialog box� �Value�� �� �Delay�� �� �Repeat Every�� ����
�Kind�� is �Freeze�� and is that value for all of the following entries� click the �Force� button� 
NOTE�
the signals are not displayed in the Wave or List windows until the simulation begins��

Similarly� enter the following� each line of settings in a di�erent �Force� invokation�

�



for �s��

�� �� ��� �
already done�
� ���� ���

for �zero��

�� ��� ���
� ���� ���

for �one��

�� ��� ���
� ���� ���

Now let	s simulate� In the main window 
command window� the �rst one�� click on the �Run� button
repeatedly� until you have simulated about ��� ns� In the Wave window� click�

Zoom�Full Size

to see a big picture of the trace� Convince yourself that what you see indicates that the MUX is
working�

Congratulations� You	ve done it�
One last thing� print the timing chart by writing a Postscript version of it to a �le�

File�Write Postscript����OK�

and then printing the �le� e�g��
lpr �Pqms wave�ps

I	ve attached a sample output for the MUX� following everything done in the tutorial�
That	s it�
Last note� you can exit all of the QuickHDL windows at once by killing the main QuickHDL window�

Good luck�

�


