
University of Rhode Island
Dept. of Electrical and Computer Engineering
Kelley Hall
4 East Alumni Ave.
Kingston, RI 02881-0805, USA

Technical Report No. 072001-100

HDLevo – VHDL Modeling of Levo
Processor Components

Thomas Wenisch
Augustus K. Uht

Department of Electrical and Computer Engineering
University of Rhode Island

Email: {iota,uht}@ele.uri.edu

Web: www.ele.uri.edu/~uht

July 20, 2001

Abstract1
Levo is a prototype uniprocessor whose goal is to achieve ILP in the 10’s. HDLevo is an effort to
create VHDL models of key components of the Levo prototype as a verification of the feasibility
of constructing Levo, and to provide very accurate hardware size estimates for those
components. To date, models of the Active Station and the Register Filter Unit have been
completed, along with a behavioral VHDL test harness. Gate and transistor counts for the
completed hardware models are presented. The test environment and methodology are
explained.

Copyright 2001 University of Rhode Island.

1 This work was partially supported by the National Science Foundation through grants: MIP-
9708183, DUE-9751215, EIA-9729839, by the URI Office of the Provost, by an equipment grant
from the Champlin Foundations, by software donations from Mentor Graphics Corporation and
Xilinx Corporation. Patents applied for. This work has been submitted for publication

 2

Contents
1 Introduction__ 3

2 Active Station___ 5

2.1 Load Bus Interface __ 5

2.2 Register Forwarding Bus Interface ___ 6

2.3 Predicate Forwarding Bus Interface __ 8

2.4 Register Backwarding Bus Interface_______________________________________ 11

2.5 Memory Forwarding Bus Interface__ 11

2.6 Memory Backwarding Bus Interface ______________________________________ 12

2.7 Processing Element Bus Interface ___ 13

2.8 Processing Element Return Bus Interface __________________________________ 13

2.9 Active Station Register File __ 13

2.10 Active Station Control Unit ___ 13

3 Register Filter Unit ___ 15

4 HDLevo Test Harness ___ 16

4.1 Processing Elements __ 17

4.2 Levo Testbed __ 17

4.3 MIPS Assembler ___ 17

5 Synthesis Results ___ 18

6 Conclusions ___ 18

7 References __ 20

8 Appendices__ 21

8.1 Active Station Component Design Reports__________________________________ 21
8.1.1 Register Forwarding Bus Interface ______________________________________ 21
8.1.2 Register Backwarding Bus Interface _____________________________________ 24
8.1.3 Memory Forwarding Bus Interface ______________________________________ 25
8.1.4 Memory Backwarding Bus Interface _____________________________________ 26
8.1.5 Predicate Forwarding Bus Interface______________________________________ 27
8.1.6 Processing Element Bus Interface _______________________________________ 29
8.1.7 Processing Element Return Bus Interface _________________________________ 30
8.1.8 Active Station Register File __ 31

8.2 Output from the Xilinx Alliance Synthesis Tools_____________________________ 34
8.2.1 Active Station___ 35
8.2.2 Register Filter Unit (Column Head)______________________________________ 35
8.2.2 Register Filter Unit (standard) __ 35

 3

1 Introduction

The Levo project seeks to develop a new architecture for uniprocessors, which will allow
very high levels of parallelism to be exploited, without requiring any changes to existing
instruction set architectures. The goal of Levo is to develop a MIPS R3000 compatible
processor, which can achieve an average of 20 instructions executed per cycle. Levo can achieve
such high levels of ILP by using a novel execution model called resource flow computing.
 Resource flow computing is an execution architecture whose guiding philosophy is to
attempt to utilize all available execution resources in every cycle. Instructions are speculatively
executed if an execution resource is available, even if the inputs for that instruction are not yet
available. Instead the inputs to the instruction are speculated, branch direction and data values
are predicted and the instruction is speculatively executed. Later, when the inputs of the
instruction do become available, if it is discovered that the speculative execution result is
incorrect, instructions are re-executed as necessary. The name “resource flow” comes from the
mental image of processor resources “flowing” to active stations that have an instruction to
execute (possibly speculatively), rather than being driven by the availability of final committed
values for an instructions inputs. The availability of resources drives execution, not the
availability of inputs.

In Levo, the traditional instruction reorder buffer is replaced by an array of active stations
called the execution window. The execution window is organized into columns, and the columns
are further sub-divided into
sharing groups. The
HDLevo model realizes a
machine with 8 columns of
4 sharing groups, with 8
active stations per sharing
group, for a total of 256
active stations. These
dimensions represent only
one among many of the
possible machine
configurations being studied
in the Levo research effort,
however, results thus far
have been promising for
such a setup. Each active
station tracks the state of a
single instruction in the
processor’s static execution
path. Figure 1 shows a
diagram of a sharing group.

The execution window is loaded with instructions starting with the first active station,
and further instructions are loaded into the execution window following the most likely path
through a process’s static control graph. When all the instructions in the first column have fully
executed, the instructions in the column are committed, i.e., writes to the memory system are
completed, processor exceptions are raised, and the column is retired. Once a column has been

Figure 1 – Internals of a Sharing Group. This figure shows the
relationship between a sharing group of active stations, a register filter
unit, and a processing element. Interconnections to the memory system
(forwarding and backwarding busses) are omitted in this figure.

PE
Bus

Active
Station

Load
Busses

Register Filter
Unit

Register
Backwarding
Bus

Register
Forwarding
Busses

Active
Station

Active
Station

Active
Station

Active
Station

Active
Station

Active
Station

Active
Station

PE
PE
Return
Bus Predicate

Forwarding
Bus

 4

retired, all the columns in the system are renamed, and the now empty column is loaded with the
next set of instructions.
 In addition to a set of active stations, each sharing group also contains a single processing
element. A processing element is a set of execution resources, such as an ALU and FPU, and
may be pipelined, or multiple-issue. In HDLevo, each processing element is a single-issue
processor that can execute an instruction or perform an address calculation in one cycle. As
there is one processing element per sharing group, there are a total of 32 processing elements in
HDLevo.
 The active station is the key component of Levo, responsible for the proper execution of a
single dynamic instruction from loading to retirement. The active station is similar in concept to
the reservation station described in [1]. The role of an active station is to monitor a set of
“forwarding” busses for inputs to its instruction, and, as updates to each input are received,
dispatch the instruction for execution. Once an execution result is returned from the processing
element, the active station broadcasts the output of the instruction on the forwarding busses. In
this way, active stations pass their results to one another over the forwarding busses. One of the
key features of the forwarding bus architecture is that the length and complexity of each
forwarding bus grows linearly with the number of active stations. This is in contrast to the
complexity of many schemes for explicitly calculating the data and control dependencies among
instructions, whose complexity generally grows quadratically with the number of instructions.
By allowing instructions to execute speculatively and then re-execute when correct inputs
become available, Levo does not have to precalculate the dependencies between instructions;
incorrect results are simply discarded and recalculated.
 As the number of active stations increases, so too would the number of loads on the
forwarding busses. As processor clock speeds continue to increase, it is the distance signals
must travel on bus lines and the number of capacitive loads that limits clock rates – more so than
the complexity of the logic a signal must pass through. Thus, it is unrealistic to imagine a single
forwarding bus that can connect 256 or even greater numbers of active stations, and still carry
signals with reasonably delay. Additionally, since in any particular cycle, many active stations
will generate outputs to the forwarding busses, bus contention would become a problem. Thus,
for each of the kinds of forwarding busses in the system, the bus is divided into segments called
forwarding spans. Each forwarding span connects a subset of the total number active stations in
the processor. Some bus systems are local to a single sharing group. Others may span multiple
sharing groups or an entire column. At the boundaries between consecutive forwarding spans sit
filter units. Each filter unit acts as a buffer, receiving signals on its input bus, and competing
with other bus masters on its output bus to forward the buffered signals. Thus, it costs at least
one cycle for a bus signal to move from one forwarding span to the next. Longer forwarding
spans mean the total latency for a signal to reach all active stations is lower. Shorter forwarding
spans mean fewer loads on each bus and less capacitance in the bus, resulting in better clock
speeds.
 Filter units also have additional duties beyond simply relaying signals from one
forwarding span to the next. For example, the register filter units maintain copies of the values
of each of the MIPS architectural registers in Levo, and the memory filter units interact with the
memory hierarchy to perform loads and stores.

The remainder of this technical report describes the details of the HDLevo model
components that have been completed to date and the test environment for verifying proper
execution. Section 2 describes the details of the active station component and its HDLevo

 5

realization. Section 3 describes the register filter unit. Section 4 describes the HDLevo test
harness. Section 5 presents hardware size results for the synthesis of the active station and
register filter unit. Section 6 presents some conclusions.

2 Active Station

As described in the introduction above, the active station is the component of the Levo
machine which tracks the inputs and outputs of an instruction and competes for the execution of
that instruction. Each active station is connected to 8 bus systems, the load bus (LB), register
forwarding bus (RFB), predicate forwarding bus (PFB), register backwarding bus (RBB),
memory forwarding bus (MFB), memory backwarding bus (MBB), processing element bus
(PEB) and processing element
return bus (PERB). The
active station can be thought
of as a type of switch board
and memory – it listens for its
inputs on the various busses,
updates its state based on
them, and then generates bus
signals to communicate with
other parts of the Levo
processor. The HDLevo active
station model is organized as
a set of sub components, each
of which is responsible for
interfacing to one of these bus
systems. In addition to these
interface components, the
active station model contains one component which stores all the execution state (operand and
result values and addresses), and a final component which generates control signals and
coordinates the efforts of all the other components.

The following subsections detail each sub-component within the active station model.
The concepts and details of the operation of the Levo processor as a whole are introduced in the
discussion of the relevant sub-components. For most components, a component design report
can be found in the appendices detailing the input and output signals from the component and
explaining specific VHDL implementation issues regarding the component.

2.1 Load Bus Interface
 The load bus connects each active station to the load buffer. The instruction fetch unit
continually loads new instructions from memory following the most likely path across branches
and places those instructions in the load buffer. When a column is retired, the entire column is
loaded with a new set of instructions in a single cycle via the load bus. The load bus carries the
instruction op code for the active station along with branch prediction values from the fetch
hardware. In the HDLevo model, instruction op codes are partially decoded by the fetch
hardware, and a decoded op code is transmitted to the active station, along with additional
predication information used to control instruction execution.

Figure 2 – Subcomponents within the Active Station

AS Registers

Operand 0
Operand 1

Output
Relay

AS OpCode
PE OpCode
Predicates

Register
Forwarding

Bus Interface

Register
Backwarding
Bus Interface

Predicate
Forwarding

Bus Interface

Load
Bus Interface

Processing
Element

Bus Interface

Processing
Element
Return

Bus Interface

AS
Control Unit

Memory
Forwarding

Bus Interface

Memory
Backwarding
Bus Interface

 6

 The HDLevo load bus is a total of 100 bits wide. There are 32 parallel load busses in
HDLevo, such that an entire column of active stations can be loaded simultaneously. The load
busses for a particular row of active stations are shared across the columns. The total width of
the load bus breaks down as follows. 32 bits carry the original undecoded MIPS R3000 op code.
The intention of HDLevo is to eventually use real MIPS processor cores as the processing
elements, thus it is advantageous to include the full op code in addition to the partial decodings.
Note that in an optimal implementation of Levo, some of the duplicate information carried in
these 32 bits could be eliminated. 4 bits carry a simplified op code for the active station, used to
distinguish ALU, branch, load, store, etc instruction classes. 10 bits carry the two register
operand addresses for the instruction. One or both addresses may be unused. 5 bits carry the
output register address of the instruction, which again may not apply to all instructions. 49
additional bits carry predication information for the active station. These 49 bits are composed
of: a predicate address (8 bits), an initial predicate value (1 bit), an array of four canceling
predicate addresses (8 bits each), an array of four initial canceling predicate values (1 bit each),
and four 1 bit flags to indicate if the canceling predicates are in use. See the section on the
Predicate Forwarding Bus below for a discussion of predication in Levo and details on how these
predicate addresses and values are used.

2.2 Register Forwarding Bus Interface
 The register forwarding bus system allows the output values of assignment instructions to
be forwarded from one active station to the next. Each active station is connected to a number of
RFBs;, in the case of the HDLevo model, 4. One of these RFBs is both read and written to, the
others are only monitored. Each RFB has a forwarding span (measured in number of sharing
groups) equal to the number of RFBs. The start of each RFB is offset by one sharing group from
the previous RFB. Thus each active station monitors 4 different RFBs, each having overlapping
forwarding spans. One of these RFBs has its origin in the sharing group to which the active
station belongs. This RFB (designated as index 0 relative to the active station) is the RFB to
which the active station may write. A single transaction on an RFB transmits three pieces of
information: the address of the register (5 bits), its value (32 bits), and a time tag (nominally
need only be 8 bits, but is decoded to 13 for efficiency, as explained below). Time tags as they
are used on the RFB are a key innovation of the Levo processor architecture.
 A time tag is a designation for the active station that originated a particular register value.
When an active station forwards a value on an RFB, it also forwards its address in the instruction
window as a time tag. Other active stations that observe the forwarding transaction on the RFB
compare the time tag of the forwarded address and value to the time tag of any value they have
previously observed and used for computation. If the time tag of the forwarding transaction is
equal to or newer than the time tag of the previously observed value, the receiving active station
captures or snarfs the new value and discards any computations that have been performed with
the previous value. A higher time tag indicates that a value was generated by an instruction
further forward in the dynamic instruction stream. For correct operation, each active station
must compute its final output value using the output from nearest preceding instruction that
writes to its operands.
 As columns of instructions are retired from the instruction window and columns are
renamed, simultaneously all time tags in the system are decreased by the number of active
stations retired (the number of active stations in a column). In this way, as an active station’s
index in the instruction window changes due to its column index changing, so, too, do the time

 7

tags of every value in the instruction window that originated at that active station. Time tags
decrease to a minimum time tag of 0, indicating a value that originates from an instruction prior
to any instruction in the execution window. Note that a time tag of 0 indicates that a particular
value is no longer speculative – the instruction that generated it has retired.
 In the HDLevo model, time tags are realized as the combination of an encoded binary
index for the sharing group in which the originating active station is a member (requiring 5 bits),
plus a one-hot encoding of the active stations index within its sharing group (an additional 8 bits
for a total of 13). The advantage of this partially decoded format lies in the nature of the RFBs
within a particular sharing group. Active stations must be able to perform many fast and
hardware efficient comparisons on time tags. It is possible for the same register address to
appear on all four RFBs visible to a particular active station in the same cycle with different
values and different time tags. In this situation, time tags across all four RFBs must be compared
as well as the time tag of any previously stored value. Additionally, since an RFB is a single tri-
stated bus within a sharing group, an active station may observe a value with a time tag higher
than its own at its inputs, and must avoid snarfing these values. The partially decoded time tag
allows for optimizations of this comparison hardware.
 The register forwarding bus interface is perhaps the single most complex sub-component
of the active station. This is due to the number of time tag comparisons necessary to ensure that
the component always selects the correct RFB from which to snarf a value, and avoids snarfing
values when unnecessary.
 A fundamental assumption in the HDLevo model is that insufficient time is available in a
single clock cycle for values to propagate over a bus, and for time tag comparisons (or other
computation) to be performed. Thus, each register forwarding bus transaction must be registered
upon reception in the RFB interface. Then, in the following clock cycle, the values from the bus
transaction are passed through the comparison hardware to determine if the active station should
snarf the bus transaction for one or both of its operands, or as its relay value. (Relay values and
their use are discussed in the section on the Predicate Forwarding Bus below. For now, they can
be considered as a third operand to an assignment instruction).
 The register forwarding bus interface must contain one comparator to match operand
addresses and bus transaction addresses for each combination of bus and operand, for a total of
12 5-bit comparators. An active station is only interested in snarfing values that are for its
operand’s register addresses, and ignores all other bus transactions.
 Once it has been established that one or more RFBs carry register addresses that the
active station is interested in, the time tags of the bus transactions must be considered. First,
each transaction time tag must be compared against the output time tag of the active station
itself. If the transaction’s time tag is greater than the output time tag of the active station, then
the transaction is the output of an instruction after this active station’s, and should not be snarfed.
Note that this comparison is only necessary for RFB 0 (other RFBs can only be written to by
active stations which precede this active station, as they must be in preceding sharing groups).
Further, because the active station index portion of a time tag is decoded, this comparison can be
performed in a very hardware efficient manner.
 With these two conditions met, the time tag must be compared against the time tags of
previously snarfed operand values. Only bus transactions with equal or greater time tag will be
snarfed. Finally, after all these time tag comparisons, it is still possible that more than one RFB
carries a transaction appropriate for snarfing. Among these candidates, the transaction with the

 8

greatest time tag must be selected. Thus, another set of time tag comparators is required,
comparing each combination of RFBs.
 In addition to address and time tag comparators, HDLevo also compares the value in a
bus transaction to any previously snarfed operand values, and suppresses a snarf when the values
match. This comparison is not necessary for correct execution, but is essential for performance
reasons, as every snarf forces a re-execution of the active stations instruction.
 The register forwarding bus interface is also responsible for writing output values to RFB
0 when directed to do so by the active station’s control unit. The hardware required to implement
this is a set of tri-state drivers and bus request logic, and is small relative to the hardware
necessary for snarfing.

2.3 Predicate Forwarding Bus Interface
 One type of instruction that has largely been omitted in the above discussions is the
branch instruction. In general, all branches are predicted at fetch time, and the instruction
window is loaded with instructions following the predicted path of execution. In the case of
backwards branches (loops), this indicates that a particular instruction in a program may appear
in several active stations in the instruction window; each occurrence corresponding to a different
iteration of the loop. A misprediction of the end of such a loop, or a misprediction of a branch
which targets instructions outside the instruction window, results in the remainder of the
instruction window having to be flushed and reloaded with instructions starting at the correct
address. Levo strives to avoid this expensive situation using two key novel approaches. The
first of these approaches is veiled-explicit predication, and the second of these is disjoint eager
execution (DEE) [2]. The latter technique supplements the instruction window with additional
columns of active stations called DEE-columns, which are loaded with instructions following the
non-predicted path of execution at a particular branch. Should execution of the branch determine
that it was indeed mispredicted, the contents of the DEE column are copied into the instruction
window and only a minimum of cycles are lost. The intuition behind DEE is that an instruction
that appears on the non-predicted execution path for the first branch in the execution window is
in many cases more likely to be executed than the instruction at the 256th position in the
execution window. The 256th instruction may only be executed if perhaps 20 or more branch
predictions are correct, while the DEE instruction’s result may be required if only a single
prediction is incorrect. The degree to which DEE may be able to improve performance depends
on the frequency and accuracy of branch prediction. DEE is not included in the current HDLevo
test harness, and no further discussion of its implementation is made in this report. DEE is
planned for addition in the next version of HDLevo.
 Veiled explicit predication, on the other hand, is essential to Levo and is modeled in
HDLevo. Predication refers to the well-known technique of replacing forward conditional
branches with an assignment to a boolean predicate register, and then conditioning the execution
of instructions between the branch instruction and its target (the branches domain) on this
predicate. For example, the sequence of instructions:

10 if (a == b) goto 30
20 c := d
30 …

can be replaced with the following:
10 pred := (a == b)
20 if (not pred) then c := d
30 …

 9

In many modern instruction set architectures (for example the Intel IA-64), predicate registers
appear as part of the programmer-visible set of architectural registers, and instructions must be
explicitly assigned a predicate register address. Hence, predication is called visible explicit. In
the Levo architecture, however, forward branch instructions with a domain smaller than the
instruction window are automatically converted into predicated assignments by the instruction
loading hardware, and the predicate register addresses may not be directly selected by the
programmer. Therefore, this novel form of predication is called veiled explicit predication.
 The instructions in the instruction window can be divided into three classes, forward
branch instructions eligible for predication (subject to the domain size restriction; namely that
the branch and its target will both appear in the instruction window, that is, they are less than 256
instructions apart)), targets of such a branch, and any other instructions. Note that it is possible
for an instruction to be both a forward branch, and itself a target, in which case it belongs to both
classes. As the instruction fetch hardware loads each instruction into the execution window, it
assigns to each instruction an input predicate address, called its pin. Initially, this pin is a special
code indicating an always-true predicate. When a branch instruction is encountered, the branch
is assigned two output predicate addresses. The first is called the branch’s output predicate or
pout. The value of this predicate will be the inverse of the result of the branch’s condition, once it
is resolved, logically ANDed with the branch’s pin. The second output from a branch is called its
canceling predicate or cpout, and its value is the branches condition ANDed with the branch’s pin.
A particular pout address and cpout address always correspond to one another (ie the same address
is used for both). Any instruction following a branch, including another branch, uses the pout of
the branch as its pin. Expressed in words, this means that the input predicate controlling the
execution of instructions following a branch is the output predicate of that branch. Following
instructions in the branch’s domain will only be executed if the branch is not taken.
 When a
second branch
follows the first, its
pout will only be true
if both its own
condition is false (it
is not taken) and the
previous branch’s
condition was false
(its pin is true). In
this way, branch
condition chain their
predicates together,
and instructions
following the second
branch are
conditioned upon the
result of both
comparisons.
Branch targets, on
the other hand,
should be executed

40

pI

30

20

10

1

pin cpin pout cpout

p0 p0

p0

p10

p10

p10

0

0

0

0

cp10 p = p + cp40 10 10

p = p10 0bc cp = bc p10 0 1

= bc p 0 + bc p = p0 0

bc p0

bc p0

– –

–

– –

–

–

= p = pout 0

d = e + f

if goto 40bc

x = y + z

u = v + w

r = s + t

address Instruction

I

I in I

I out

p
p = p p = 1

p = p

 is effective predicate for corresponding (same line) Instruction. For non-branch
 and non-branch targets, . For branches, . (All branches are
 completely independent and may execute at any time.)
 For branch targets, .

p

cp

p
bc

p = p p = p + cp

cp
cp = bc p

in

in

out

out in out in in

out

out in

 is effective input predicate for Instruction; its address is kept
 with Instruction.

 is effective input cancelling predicate for Instruction; its address is kept
 with Instruction.

 is effective output predicate for Instruction. Is only set by branches and
 their targets. In general, for branches with branch condition ,
 ; for branch targets, . Address = Instruction’s
 Time Tag.

 is effective output cancelling predicate; only set by branches. In
 general, . Address = Instruction’s Time Tag.

bc

 10

in either of two cases. First, if their pin is true, indicating that they were reached from the
previous instruction. However, a branch target should also be executed if a branch that targets it
is taken. When a branch is resolved as taken, its cpout will be true. Thus, in addition to having a
pin input, branch targets also have one cpin input for every branch that targets them. A branch
target is executed if its pin or any of its cpin inputs is true. Furthermore, instructions following
the branch target also must execute. Therefore, the branch target instruction also generates a
pout, and instructions following it use this value as their pin. Using these rules, any sequence of
forward branches can be converted into veiled explicit predication. Figure 3 shows a diagram of
veiled explicit predication.
 What is needed in HDLevo, then, is a hardware realization for the assignment of
predicate and canceling predicate addresses, a method for communicating predicate values from
active station to active station, and a protocol to follow in the case that an active station’s input
predicate is false. Assignment of predicate and canceling predicate addresses occurs in the load
hardware, and is loaded into the active station on the load bus as mentioned above. Every
instruction has an input predicate address, either address 0 for instructions with an always-true
input predicate, or the active station time tag of the nearest preceding branch or branch target.
Branch instructions have an output predicate and output canceling predicate address equal to
their active station index. Branch targets have a set of input canceling predicate addresses, each
corresponding to the address of the branch’s source. In HDLevo, four canceling predicates are
supported per instruction. If a particular instruction is targeted by more than four branches, the
load hardware must add NOP instructions to the instruction window ahead of the targeted
instruction, to be able to support the additional canceling predicate requirement. Note that as
columns are retired from the instruction window, the column portion of active station time tags
change, and predicate addresses throughout the execution window must also be adjusted to
remain synchronized.
 Predicate values are communicated from one active station to the next on the predicate
forwarding bus. The predicate forwarding bus is in many respects similar to the register
forwarding bus. However, in the current HDLevo model, there is only one predicate forwarding
bus, not four in parallel as for the RFB. The forwarding span of each predicate forwarding bus
segment is a full column, and predicate filter units (which forward predicate values from one
span to the next, and arbitrate the bus for their column) sit at the top of each column. The
predicate forwarding bus is 10 bits wide. Eight bits identify the predicate address for the bus
transaction (the index of the initiating active station), one bit indicates the predicate value, and
the other the canceling predicate value. Note that predicate and canceling predicate values are
always generated and forwarded together. A taken branch generates a predicate value of ‘0’ and
a canceling predicate value of ‘1’. A not-taken branch generates a predicate of ‘1’ and a
canceling predicate of ‘0’. A branch instruction whose input predicate is ‘0’ (that is to say, that
is itself skipped by other branches), generates predicate and canceling predicate of ‘0’. A branch
target generates a predicate of ‘1’ if either its input predicate, or any of its canceling predicates
are ‘1’, and always generates a canceling predicate of ‘0’.
 Snarfing predicates takes very little hardware, as only the address must be compared.
The complexity of predication is not in the hardware of the predicate forwarding bus interface.
The difficulty of predication is illustrated by the following example.
 Consider an assignment instruction, say R3 = R1 + R2. Like any other instruction, this
assignment is predicated, and an initial predicate prediction is loaded into the active station along
with the instruction. Suppose that the initial prediction of the predicate is ‘1’, and therefore, the

 11

assignment instruction is executed, and forwards an output value for R3 equal to R1 + R2. Now,
suppose that a branch prior to this instruction resolves as mispredicted, and the active station
receives a new predicate value of ‘0’. The active station must suppress its execution. However,
the instruction has already executed, and its output value has already been sent on to other active
stations, which are now potentially performing calculations with an incorrect input. These other
active stations need the value of R3 prior to the addition of R1+R2.

In order to correct this situation, each active station maintains a relay value, along with
its operands and output value. The relay value of an instruction is the value its output register
had prior to the instruction’s execution. This relay value is snarfed from the register forwarding
bus just as operand values are, and may be updated over time as previous active stations execute
or re-execute. When an assignment instruction’s predicate changes from a ‘1’ to a ‘0’, the
assignment instruction outputs its relay value as if it was the instructions output value. This will
force any later active stations, which have performed computations using the incorrect register
value to recalculate their outputs using the correct value. If an update for an active station’s
relay value arrives while its input predicate is ‘0’, it must relay the new value. In this way,
correct execution is ensured.

2.4 Register Backwarding Bus Interface

In order for an active station to compute its output values, it must observe its operands on
a register forwarding bus. In general, the active station will see its operands and outputs because
of forwarding operations that are initiated by another active station. However, it is possible that
an active station’s input is not written to by any other instruction earlier in the window. For
example, a register may be storing a variable that has not been written to for several hundred
machine cycles (many more instructions than fit in the execution window).

To avoid the situation where an active station “starves” waiting for a register to be
forwarded to it, each active station makes an explicit request for all of its operands. This request
is made on the register backwarding bus. Each active station is connected to exactly one RBB.
This RBB connects all the active station in a sharing group to the register filter unit situated at
the top of the sharing group. Active stations compete for the RBB to request their operands. The
register filter unit monitors these requests and compares them against values that it has observed
on the bus, filling any requests that have not been filled by prior forwarding operations, using the
most up-to-date value the register filter unit has observed.

In the current iteration of HDLevo, the register backwarding bus interface of each active
station is very simple: it requests each of the instruction’s operands one by one, and pays no
attention to requests made by other active stations. The register filter unit ensures that requests
for a particular address are filled only once, even if requested by multiple active stations.
Contention for the register backwarding bus has not been a bottleneck in current HDLevo
simulations.

The register backwarding bus is 5 bits wide, carrying a single register address per cycle.
The register filter unit acts as the bus arbiter.

2.5 Memory Forwarding Bus Interface

As with registers, memory addresses that are written by a store instruction are often used
by load instructions shortly after the store. Levo exploits this temporal locality by forwarding
the output of store operations on memory forwarding busses, so that they can be snarfed by later

 12

loads. Additionally, when a load requests an address (see the next section on the memory
backwarding bus), the requested value is sent to the load on the memory forwarding bus system.

In HDLevo, there are four memory forwarding busses. The four busses are interleaved, so
a particular double-32 bit word in memory may only appear on one of the four busses. Memory
filter units (much like the register filter units) sit at the top of each column, forwarding memory
operations from previous columns.

When a store operation is executed, the value to be stored is written by the active station
to the appropriate memory forwarding bus based on the low order bits of the address. Along
with the value, the time tag and the necessary bits of the address are written, and a flag indicating
that the forward is a store operation. If the store operation is re-executed, it writes to the memory
forwarding bus again with the same time tag. If any load operation after the store is waiting for
the same address, it will snarf the stored value. At the boundary between columns, a memory
filter unit receives the store operation.

The memory filter unit has two duties. First, it forwards the written value on to the
subsequent column’s memory forwarding bus. Second, it caches the value locally, so that it can
satisfy any requests for that address that arrive on the memory backwarding bus. The cached
writes will be written to the memory hierarchy when the column containing the memory filter
unit is retired. If a second forward occurs for the same address, the value cached in the memory
filter unit is overwritten.

The memory system must also account for two other possible changes to a cached write.
First, a store instruction may be predicated false, that is to say, it may receive an updated
predicate value indicating it should be skipped by branches. Secondly, since many memory
operations calculate their target address based on a register operand, and this register operand
may change, it is possible that a write on the memory bus may be issued with an incorrect
address. In both situations, a write operation must be “rolled back”, and its effects cancelled. In
order to facilitate this, the memory forwarding bus system supports a nullify operation. When
issuing a nullify, the active station writes the address and time tag to be nullified, and a flag
indicating that a nullify transaction is occurring to the memory forwarding bus. The memory
filter unit receives this nullify, passes it on to the next column, and then deletes any cached value
for that address. If an active station snarfs a nullify transaction, it re-requests its value on the
memory backwarding bus.

The memory forwarding bus interface in HDLevo has a number of duties. If the active
station is a load instruction, it must monitor the appropriate memory forwarding bus, based on
the load address, waiting for the value to arrive either from the memory hierarchy or from
another active station. For a store instruction, the memory forwarding bus must issue forwarding
transactions when the stores output and address are available, and issue nullify transactions when
the write address changes or the instructions input predicate changes from true to false.
However, since only one of the memory forwarding busses is used at a time per active station
(based on its address) very few comparators are required relative to the register forwarding bus
interface, which must always monitor all busses.

2.6 Memory Backwarding Bus Interface

Much like the register backwarding bus interface, the memory backwarding bus interface
is used to request instructions’ input values. Like the memory forwarding busses, there are four
interleaved memory backwarding busses. Load instructions issue a request on the memory
backwarding bus once they calculate their load address. These requests are received by the

 13

preceding memory filter unit. The memory filter unit firsts attempts to satisfy the load request
with values from its local cache. If there is no match, the memory filter unit issues the load to
the remainder of the memory hierarchy. Once the loaded value is available from memory, the
memory filter unit forwards the requested value on the appropriate memory forwarding bus, with
a time tag of 0 (indicating a value that is older than any instruction in the instruction window).

Currently, there is no mechanism by which loads of incorrect addresses are “canceled”,
however, such an enhancement may be possible in a future version of HDLevo.

2.7 Processing Element Bus Interface

The processing element bus connects each active station in a sharing group to the
processing element belonging to that sharing group. Active stations dispatch instructions for
execution by a PE on the processing element bus. The active station forwards the op code,
operand values, and its own address within the sharing group. The bus arbitration of the
processing element bus favors granting the bus to active stations with low indices, as these
instructions results are more likely to be needed by later instructions and less likely to require re-
execution.

In HDLevo, the processing element bus carries two 32 bit operands, one 32-bit op code,
and a 5 bit active station index.

2.8 Processing Element Return Bus Interface

The processing element return bus returns results that have been calculated by the
processing element to the appropriate active station. In HDLevo, all calculations are assumed to
take only a single cycle. However, the HDLevo model also can support other execution models,
where the processing element may by pipelined or multi-issue. Results on the processing
element return bus are accompanied by the index of its destination active station.

2.9 Active Station Register File

The active station register file is not a register file in the traditional sense; it is the name
of the component of the active station which stores all of the state of the active station. The
register file stores all the operands, outputs, addresses, and time tags of the register station.

The register file stores a total of 377 bits of information. 50 bits each are for two
operands (32 bit value, 5 bit register address, and 13 bit time tag). An additional 5 store the
output address, 32 for the calculated output value, 32 for the relay value, and 13 to store the time
tag of the last observed relay value. The time tag of the output of the active station is also
calculated in the register file, based on the active station’s current index in the window. 32 bits
store the instruction op code for the processing element, and 4 store the instruction class for the
active station’s control unit. Another 32 bits store the memory address for load and store
instructions. There are 8 bits for each of the predicate addresses (1 input predicate and 4
canceling predicates), 1 bit to store each of these 5 predicates, and 4 1-bit flags to indicate if each
canceling predicate is in use. In order to support 64-bit floating-point operations, an additional
32 bits are required for each of the operands, relay, and output data registers. In the HDLevo
model, all of these values are stored in flip-flops.

2.10 Active Station Control Unit

The active station control unit is the final component of the active station. This
component generates control signals for the remainder of the active station based on the active

 14

station’s 4-bit op code class, the state of the input predicates (both stored in the register file), and
the present state of a number of small internal state registers. The internal state registers indicate
whether the data registers in the active station register file contain valid data, and direct the
actions of the active station. These state registers are all 1 bit, and track whether a certain
condition is true or not. The actions of the active station are determined by combinational logic
based on the op code class and these state registers. Each of these state registers is now
examined.

There are three state bits which track whether or not operand and relay values have been
requested on the register backwarding bus. When an instruction is loaded into the active station,
these state bits are cleared. Each bit is set when the corresponding operand or relay is requested
on the register backwarding bus. Note that it may require several cycles for a request to be
issued on the RBB due to bus contention. An instruction which is currently predicated true (its
input predicate or any input canceling predicate is true) that requires an operand may not retire
until the corresponding state bit is set. An instruction that is predicated false may not retire until
the state bit indicating that the relay value has been requested is set. This ensures that all
required values will be requested before the column can retire. If a value is requested and has
not been supplied to the active station, the register filter unit owning the register backwarding
bus will be aware of this and will prevent the column from retiring. In the HDLevo VHDL
model, these state bits are referred to as the sReg_OperandRequested and sReg_RelayRequested state
registers.

The sReg_OutputValid state register indicates whether the data value stored in the register
file’s output register is valid. This state bit is reset upon load, and upon any operand snarf. It is
set whenever an execution result returns from the processing element. sReg_OutputValid is always
set for NOP instructions.

The sReg_OutputDirty state register indicates whether an updated value in the output data
register has been forwarded on the register forwarding bus or not. sReg_OutputDirty is cleared
when the active station is loaded and anytime the output data register is successfully forwarded
on the register forwarding bus system. sReg_OutputDirty is set whenever a result is returned from
the processing element and the active station is predicated true. sReg_OutputDirty is also set
anytime the active station’s input predicate changes from false to true. The active station may
not retire while sReg_OutputDirty is set.

The sReg_RelayDirty state register indicates whether the data value stored in the register
files relay register requires forwarding. Note that this is only the case when the active station is
predicated false. sReg_RelayDirty is set when a new relay value is snarfed, or when the active
station’s input predicate changes from true to false. sReg_RelayDirty is cleared on load and
whenever the relay value is forwarded on the register forwarding bus. The active station may not
retire if sReg_RelayDirty is set and the active station is predicated false.

sReg_ExecutionPending is set whenever the active station issues its instruction for execution
to the processing element. It is cleared when results are returned from the processing element.

sReg_PendingExecutionStale is set if a snarf of any operand value occurs while
sReg_ExecutionPending is set. This indicates that an operation has been sent to the processing
element for execution, but that the operand values that were sent have since been updated. The
execution result must be discarded. The operation can be issued for re-execution immediately.
If a processing element takes more than one machine cycle to return an execution result,
sReg_PendingExecutionStale must be replaced with an up-down counter sufficient to count the
maximum number of cycles an execution could take. Thus, when repeated snarfs occur one after

 15

the next, sReg_PendingExecutionStale counts the number of invalid results that will return from the
processing element, before the final, valid result is returned. sReg_OutputValid may only be set
when sReg_PendingExecutionStale is clear (zero if it is realized as a counter).

sReg_PredsDirty indicates whether a branch instruction or branch target must write an
output predicate to the predicate forwarding bus before the active station may be retired.
sReg_PredsDirty is always clear if an instruction is neither a branch, nor a branch target (branch
targets have at least one valid input canceling predicate). For branches, sReg_PredsDirty is set
whenever the branch condition is reevaluated and the result is different than the last result
written to the predicate forwarding bus, or the branch’s input predicate changes. For branch
targets, sReg_PredsDirty is set when the input predicate or canceling predicates of the instruction
change and cause a change in its output predicate. In either case, sReg_PredsDirty is cleared when
the new predicate is forwarded on the predicate forwarding bus.

3 Register Filter Unit

The register filter unit is the component of the Levo machine which maintains copies of

all the MIPS architectural registers and manages the flow of register values on the register
forwarding busses.

The register filter unit has four input register forwarding busses, four output register
forwarding busses, and one input register backwarding bus. The register filter unit must
maintain a copy of each of the 32 MIPS architectural registers, along with a time tag
corresponding to the value stored in each register. Whenever new values for any register appear
on one of the input register forwarding busses, the register filter unit must compare the time tag
of the new value with that of the old, and store the new value if the time tag is newer. Since it is
possible for all four input busses to be active in a single cycle, the architectural register file must
have at least 4 input ports. Furthermore, it is also possible for any combination of busses to carry
values for the same address. In this case, time tags must be compared to verify which value, if
any, should be snarfed. Because of the number of comparators required for this, the register
filter unit requires the most hardware of any HDLevo component.

Three of the input register forwarding busses “pass through” the register filter unit. That
is to say, the register filter unit monitors these busses, but does not write to them. These busses
are designated as RFB 3, 2, and 1. The fourth input register forwarding bus (RFB 0) terminates
at the register filter unit. This RFU is at the end of the RFB 0’s forwarding span. The three
“pass through” busses are re-indexed as 2, 1, and 0 when they leave the register filter unit, and a
new register forwarding bus originates at the RFU, and is designated as the new RFB 3. In this
way, each register forwarding bus has a forwarding span of four sharing groups.

The register filter unit writes values to its output RFB 3. Any value that is snarfed from
input RFB 0 must be re-forwarded on output RFB 3 as soon as the bus becomes available. Note
that if a value arrives on RFB 3 but is not snarfed, either because the value is unchanged or its
time tag is older than that of the previously stored value, it is NOT rebroadcast, reducing
unnecessary bus traffic. Additionally, any values requested on the register filter unit’s
backwarding bus must be forwarded on RFB 0. By performing these two functions, the register
filter unit guarantees that every active station sees all the operand values that it requires to
perform its computations. A register filter unit prevents the column it is in from being retired
until it has performed all pending forwarding operations.

 16

There are actually two varieties of register filter unit in the Levo machine. One variety is
located at the top of each Levo column, at the head of the first sharing group in each column.
These register filter units are special because they could be located at the boundary between the
lowest and highest indexed columns in the Levo instruction window. (Recall that columns are
renamed as instructions are retired in the window in a circular fashion, thus, each column spends
some time as “column 0”). These register filter units have the double duty of maintaining the
oldest register values in the machine (those with time tag 0), while at the same time, collecting
the “most speculative” register values (those with the highest time tags) at their inputs. Thus,
these register filter units must maintain two copies of all the MIPS architectural registers, one of
which is only used when the register filter unit sits at the head of column 0.

When one of these “split” RFUs is at index 0, it receives and stores values from its input
RFBs and stores these values in one set of registers. Backwarding requests are satisfied from a
second set of registers. Once column 0 is retired, the values from the first set of registers are
copied into the second, and only the second set of registers is used (as per a normal RFU), until
the column again becomes column 0. This prevents values with high time tags from “wrapping
around” the instruction window and reappearing at the lowest-indexed active station.

4 HDLevo Test Harness

Since not all of Levo has been implemented in the synthesizable VHDL model, a test

harness is needed to simulate the function of parts of Levo that are still missing in the HDLevo
model. The test harness must play the part of the instruction fetch and load system, the memory
system, the instruction window control logic, the processing elements, and predicate and
memory filter units, in order to provide a simulation environment in which the register filter unit
and active station models can be tested.

The test harness creates a Levo testbed which wires the active stations and register filter
units together into an
execution window, and
provides behavioral (non-
synthesizable) VHDL
implementations of the
surrounding hardware. In
addition, to facilitate testing,
the test harness has a built-in
MIPS assembler which
assembles input programs and
loads them through simulated
instruction fetch hardware
into the modeled active
stations. This built-in
assembler greatly eases
testing with HDLevo as MIPS
programs can be fed directly into the simulation environment.

The following sub-sections describe how various parts of the test harness are
implemented.

Figure 4 - HDLevo Test Harness Block Diagram for a Single Column

ASMASM
Assembler

Instruction
Queue

Predicate
Assign

Decode
Load
Buffer

Sharing
Group

PFB
Arbitrate

Predicate
Forwarding
BusSharing

Group

Sharing
Group

Sharing
Group

Register
Forwarding
Busses

 17

4.1 Processing Elements
Processing elements are simulated using behavioral VHDL. The processing element is

implemented as a VHDL process, which uses a large tree of if statements to match MIPS op
codes to instruction types, decode the MIPS operation, and perform the operation using standard
VHDL library components. Currently, only a representative subset of all MIPS instructions is
supported. As HDLevo becomes capable of more sophisticated simulations, the full MIPS
instruction set will be supported. Only BEQ, ADD, and ADDI, and NOP instructions are
currently supported. The BEQ instruction is sufficient for HDLevo to verify predication
functionality (all other direct branches are functionally equivalent to BEQ except for the branch
condition calculation, which does not affect the logic in the active station). ADD instructions are
used to represent all 2 operand ALU operations, which again are functionally equivalent from the
point of view of the active station. The ADDI instruction represents 1 operand ALU instructions
and is also used to calculate the target address of memory instructions. Thus, these three
instructions demonstrate the capability of HDLevo to carry out a very large subset of all MIPS
R3000 instructions. Floating point operations are currently omitted from the HDLevo processing
element, however, the HDLevo active station model is capable of storing and forwarding 64 bit
floating point operands and results.

4.2 Levo Testbed

The Levo testbed is the top-level component of the HDLevo test harness. The testbed
component instantiates two columns of active stations and register filter units, and wires them
together. The testbed is also responsible for invoking the assembler and loading the columns
with instructions. As each column reports that it has completed execution of all its instructions,
the testbed renames the two columns and loads the now-empty column with a new set of
instructions. The testbed also generates global clock, reset, and other configuration signals.

The testbed component also must perform the conversion from branches to predication,
assigning predicates and canceling predicates as required. Assigning predicates to branches is
simple, since the predicate address is equal to the index of the active station into which the
instruction is loaded. However, the targets of these branches must be loaded with the correct
canceling predicate addresses. Several VHDL variables maintain arrays of branch targets and
their corresponding predicates and these arrays are searched as instructions are loaded into active
stations for branches targeting the instruction.

The testbed must also process branch instructions which branch backwards or out of the
instruction window, clearing the window and reloading it from the new starting address. This
functionality is omitted in the current version of the testbed and is planned for addition in the
next version. Thus, at this time, only forward branches with targets in the instruction window
can be tested. However, this is sufficient to verify that predication is working properly.

It is planned to expand the testbed to simulate eight columns of active stations. However,
to increase the speed of simulation and the readability of results, only two columns are currently
simulated.

4.3 MIPS Assembler

A lexical analyzer and finite state automata parser have been implemented using the
VHDL textio facilities to create an assembler which can assemble directly from MIPS .asm files
into the simulated memory of the HDLevo machine. The assembler analyzes its input line by
line, and breaks each line into a stream of tokens using the textio library. These tokens are then

 18

fed to the state machine, which parses MIPS assembly instructions and writes MIPS machine
language into the simulated memory. The assembler issues diagnostic messages any time it
cannot determine how to traverse the parser’s state transition tree due to faulty input files. The
state machine itself is implemented as a large tree of “case” statements based on the present state
and the next input token. The assembler currently supports the same subset of instructions that
the simulated processing element supports, namely BEQ, ADD, ADDI, and NOP. Even this
simple set of instructions allows for the construction of fairly complex test cases, which ensure
that the active station and register filter unit models are functioning properly.

5 Synthesis Results

Hardware sizes for the active station and register filter unit models were derived by
running the VHDL input for these models through VHDL synthesis tools. The models were
optimized and translated into net lists using LeonardoSpectrum 1999j. The net lists were than
mapped for specific FPGAs using the Xilinx Alliance 3.1i tool chain. Synthesis targeted a
Xilinx VirtexE V1000efg1156 FPGA. The Levo project is planning to implement a prototype of
the Levo processor using the VirtexE 1000 FPGAs, hence, this FPGA was chosen as the
synthesis target to generate size estimates.

The Xilinx Alliance tool chain provides a metric at the end of the mapping process which
measures the equivalent gate count for a design. One “equivalent gate” is a 2 input NAND gate,
or roughly 4 transistors [3]. The following table presents the equivalent gate and estimated
transistor counts for the active station and both types of register filter units. Also included are
estimates for a memory filter unit, and predicate filter unit. These estimates are based on scaling
the numbers for the register filter unit by the relative complexity we estimate for the other filter
units, and are not based on VHDL models.

Component Model

Equivalent Gates Estimated Transistors

Active Station 21621 86484
Register Filter Unit (standard) 60040 240160
Register Filter Unit (column-head) 75207 300828
Predicate Filter Unit (estimated) 5000 20000
Memory Filter Unit (estimated) 37604 150414

6 Conclusions

The HDLevo project demonstrates the feasibility of realizing a full Levo prototype using

FPGA’s, and the feasibility of implementing the Levo design in a custom ASIC using today’s
state-of-the-art fabrication processes. The key component of Levo, the active station, uses
roughly 86000 transistors. Eight active stations (one sharing group) fit easily on a single
VertexE 1000 FPGA, each using roughly 8.5% of available logic cells, leaving sufficient space
for routing and interconnection logic. The register filter unit is currently anticipated to be the
largest of the Levo components, and is 240000 (300000 for column-head) transistors. A register
filter unit uses roughly 20% of the available logic on a VertexE 1000. It is the hope of the Levo

 19

project to implement a prototype Levo processor using interconnected VertexE FPGA’s, a goal
which appears realistic given the gate counts established here.

For a full Levo processor, 512 active stations are required (256 each for the execution
window, and DEE paths), for a total of 44 million transistors. 32 register filter units are required
(1 per sharing group), 8 of which are the larger column head variety. These require a total of just
over 8 million transistors. Thus, including the estimates for predicate and memory filter units,
the bulk of the Levo processor fits in less than 59 million transistors. The Intel Itanium
Processor uses a total of 25 million transistors in the processor and 300 million in the cache [4].
Based on this comparison, it seems clear the Levo could be realized on a single chip using
current or very near future fabrication technology.

 20

7 References

[1] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM

Journal of Research and Development, vol. 11 pp. 25-33, January 1967.
[2] A. K. Uht and V. Sindagi, “Disjoint Eager Execution: An Optimal Form of Speculative

Execution,” in Proceedings of the 28th International Symposium on Microarchitecture
(MICRO-28), pp. 313-325, IEEE and ACM, November/December 1995.

[3] “Definition of a ‘gate’, when defining number of logic gates in a FPGA” Xilinx Answer
Database Record # 2155. Xilinx Corporation.
http://support.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=2155

[4] Intel Itanium Product Brief, Intel Corporation.
http://www.intel.com/ebusiness/pdf/prod/ia64/ds010401.pdf

http://support.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=2155
http://www.intel.com/ebusiness/pdf/prod/ia64/ds010401.pdf

 21

8 Appendices

8.1 Active Station Component Design Reports

The following sections of this appendix are component design reports for various sub-
components of the active station. They are a detailed reference useful as a guide for examining
and understanding the VHDL source of the active station.

8.1.1 Register Forwarding Bus Interface

Purpose:

The Register Forwarding Bus Interface is the component of Levo which reads from and writes to
the register forwarding bus system. The RFBI monitors all four of the RFBs to which an active
station is connected for bus transactions whose address matches any of the active station’s
operand or relay addresses. The RFBI compares the time tag of these transactions to those of the
previously stored values, and sends a signal to the Active Station Control Unit when a “snarf”
occurs.
When writing, the RFBI signals the bus arbitration unit that it would like to write to its output
register forwarding bus. When the RFBI is granted the bus, it writes the output or relay value to
be forwarded to the bus and signals the Active Station Control Unit to indicate that the
forwarding operation is complete.

Entity: eRegisterForwardingBusInterface
 entities/register_forwarding_bus_interface_entity.vhd
Architectures: implementation
 architectures/register_forwarding_bus_interface _architecture.vhd
 debug_imlementation
 debug_architectures/ register_forwarding_bus_interface _architecture.vhd

Component Interactions:

Strobe and Reset signals for all registers come from the AS Control Unit.
Current values, addresses, and time tags for operands, relay, and output values come from the
Active Station Register File.
New operand and relay values and time tags go to the Active Station Register File.
Control signals indicating that a snarf of an operand/relay has occurred go to the AS Control
Unit.
Control signals indicating that a the output or relay value should be forwarded come from the AS
Control Unit.

Ports:
Asc2Rfb_En_OperandSnarf (in) Enables or disables snarfing of each operand.
Asc2Rfb_En_RelaySnarf (in) Enables or disables snarfing of the relay.

 22

Asc2Rfb_En_FloatSnarf (in) Set when floating point values should be snarfed. When
floating point snarf is enabled, the LSB of operand and relay
addresses is masked for purposes of matching addresses, and
is instead used to distinguish high doubleword from low
doubleword of a floating point value.

Asc2Rfb_Req_Forwarding (in) Control signal which indicates that the RFBI should
forward a value on the register forwarding bus.

Asc2Rfb_Sel_ForwardingSignal (in) Indicates whether output or relay should be forwarded.
Asc2Rfb_Sel_ForwardingFloat (in) When set, indicates that the low byte of a floating point

output/relay value should be written to the bus.
Out2Rfb_BusGrant_RFB (in) Indicates that write access has been granted for the

register forwarding bus.
Out2All_ColumnShift (in) Indicates that a column is being retired this cycle and that

all time tags must be shifted.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OperandData (in) Current operand values
Rf2All_FloatOperandData (in) Current floating point low doubleword operand values
Rf2All_OperandAddress (in) Current operand addresses
Rf2All_OperandTimeTag (in) Current operand time tags
Rf2All_OutputData (in) Current output value
Rf2All_FloatOutputData (in) Current floating point low doubleword output value
Rf2All_OutputAddress (in) Current output/relay address
Rf2All_OutputTimeTag (in) Current output time tag
Rf2All_RelayData (in) Current relay value
Rf2All_FloatRelayData (in) Current floating point low doubleword relay value
Rf2All_RelayTimeTag (in) Current relay time tag
Rfb2Asc_Ack_Forwarding (out) Acknowledges to the ASC that a forwarding operation

has been completed.
Rfb2Out_BusReq_RFB (out) Requests write access to the register forwarding bus.
Rfb2Asc_OperandSnarf (out) Signal to ASC indicating that an operand value has been

snarfed.
Rfb2Asc_RelaySnarf (out) Signal to ASC indicating that the relay value has been

snarfed.
Rfb2Asc_FloatOperandSnarf (out) Signal to ASC indicating that low byte of a floating

point operand value has been snarfed.
Rfb2Asc_FloatRelaySnarf (out) Signal to ASC indicating that low byte of the floating

point relay value has been snarfed.
Rfb2Asc_OperandFreshen (out) Indicates that an operand value has been freshened.

Freshening means that a newer time tag, but an unchanged
value has been snarfed.

Rfb2Asc_RelayFreshen (out) Indicates that an operand value has been freshened.
Rfb2Rf_NewOperandData (out) New operand values.
Rfb2Rf_NewOperandTimeTag (out) New operand time tags.
Rfb2Rf_NewRelayData (out) New relay value.
Rfb2Rf_NewRelayTimeTag (out) New relay time tag.

 23

RegisterForwardingBus (inout) Read/Write RFB.
PassthruRegisterForwardingBusses (inout) Read-only RFBs

Internal Logic:

Diagram not available

VHDL Implementation Issues:

Note that it is assumed in HDLevo that there is not enough time in a single cycle for forwarded
signals to propagate across a bus, and then be processed at the end of the bus. Thus, values off
of all four register forwarding busses are registered in the RFBI each cycle, and then compared to
values stored in the ASRF in the following cycle. The only processing done in the cycle in which
bus transactions are received is the shifting of time tags if a column shift is signaled during the
transaction cycle.

Once registered, the addresses and time tags from each of the busses are compared against the
operand and relay addresses and time tags. These comparators are instantiated in the
GenAddressMatch generate block in the RFBI architecture. The first nine lines within the generate
block instantiate comparators for address comparison. The address comparators are broken up
over several signals in order to efficiently match addresses for floating point operations. In
floating point operations, 64 bit floating point values are stored in two consecutive architectural
registers, where the register with address ending in a ‘0’ is the most significant doubleword, and
the address ending with ‘1’ the least significant.

The next several lines evaluate the time tags of each bus signal. First, sTimeTagInPast ensures that
the bus transaction comes from an active station above this active station in the execution
window. This prevents an active station from snarfing updates from other active stations in their
sharing group which have higher time tags. The next several comparisons evaluate if the stored
value for each operand/relay is more recent than that on the bus. The final set of comparators
compare the data value from the bus transaction to that of the stored value. If the data values
match, a freshen, instead of a snarf operation is performed. In a freshen operation, time tag
values are updated, but instructions are not re-executed nor are new results forwarded on any
bus.

Another problem that must be solved in the RFBI is that the same address may appear on
multiple register forwarding busses in the same cycle. A set of comparators compare the time
tags across each combination of busses. When the same address appears on multiple busses, the
output of these comparators is used to determine which value to snarf.

Finally, freshen and snarf output signals are generated based on the results of all the
comparators. These signals also determine which bus value should be copied to the
Rfb2Rf_NewOperandData and other output signals to the ASRF.

 24

8.1.2 Register Backwarding Bus Interface

Purpose:

The Register Backwarding Bus Interface is used by Levo to request operand and relay values
from the Register Filter Unit nearest the active station. These requests are necessary to ensure
that the RFU forwards the required value on the register forwarding bus. The RFU will ignore
requests for values which have already been forwarded, or which have been requested by other
active stations.

Entity: eRegisterBackwardingBusInterface
 entities/register_backwarding_bus_interface_entity.vhd
Architectures: implementation
 architectures/register_backwarding_bus_interface _architecture.vhd
 debug_imlementation
 debug_architectures/register_backwarding_bus_interface _architecture.vhd

Component Interactions:

Current addresses for operands, relay, and output values come from the Active Station Register
File.
Control signals indicating that an operand or relay should be requested come from the AS
Control Unit.
Control signals indicating that a request has been made go to the AS Control Unit.

Ports:

Asc2Rbb_Req_Operand (in) Signal from ASC indicating that a particular operand
should be requested.

Asc2Rbb_Req_Relay (in) Signal from ASC indicating that the relay should be
requested.

Asc2Rbb_Req_FloatOperand (in) Signal from ASC indicating that a the least significant
doubleword of a floating point operand should be requested.

Asc2Rbb_Req_FloatRelay (in) Signal from ASC indicating that a the least significant
doubleword of the floating point relay should be requested.

Rbb2Asc_Ack_OperandReq (out) Signal to the ASC acknowledging a request for an
operand.

Rbb2Asc_Ack_RelayReq (out) Signal to the ASC acknowledging a request for the
relay.

Rbb2Asc_Ack_FloatOperandReq (out) Signal to the ASC acknowledging a request for the least
significant doubleword of a floating point operand.

Rbb2Asc_Ack_FloatRelayReq (out) Signal to the ASC acknowledging a request for the least
significant doubleword of the floating point relay.

Rbb2Out_BusReq_RBB (out) Requests write access to the register backwarding bus.
Out2Rbb_BusGrant_RBB (in) Indicates that write access has been granted for the

register backwarding bus.
Out2All_SystemClock (in) System clock

 25

Out2All_SystemReset (in) System reset
Rf2All_OperandAddress (in) Current operand addresses
Rf2All_OutputAddress (in) Current output/relay address
RegisterBackwardingBus (out) Register backwarding bus.

Internal Logic:

Diagram not available

VHDL Implementation Issues:

No particular implementation issues.

8.1.3 Memory Forwarding Bus Interface

Purpose:

The Memory Forwarding Bus Interface is used by Levo to forward the outputs of store
instructions and monitor for the inputs of load instructions. There are four memory forwarding
busses in Levo, each of which are interleaved to carry different memory addresses. One memory
bus carries transactions for addresses whose least significant bits are “00”, the next for “01” and
so on. The MFBI performs update and nullify transactions for store instructions. An update
transaction forwards a memory address, new value, and time tag on the bus, and indicates a write
to that memory address. A nullify transaction forwards and address and time tag, and indicates
that a previous write to that address should be rolled back. For load instructions, the MFBI
functions in a similar fashion to the RFBI, snarfing updates to its memory address. However,
since loads always load from a single address, only one memory forwarding bus need be
monitored at a time, saving a considerable amount of hardware relative to the RFBI.

Entity: eMemoryForwardingBusInterface
 entities/memory_forwarding_bus_interface_entity.vhd
Architectures: implementation
 architectures/memory_forwarding_bus_interface _architecture.vhd
 debug_imlementation
 debug_architectures/memory_forwarding_bus_interface _architecture.vhd

Component Interactions:

Current memory addresses value, and time tags come from the Active Station Register File.
Control signals indicating that the MFBI should snarf or perform and update or nullify
transaction come from the AS Control Unit.
Control signals indicating that a snarf or transaction has occurred go to the AS Control Unit.

Ports:

 26

Asc2Mfb_En_MemorySnarf (in) Signal from ASC indicating the MFBI should monitor the
appropriate forwarding bus to snarf memory updates.

Asc2Mfb_Req_Store (in) Signal from ASC indicating a transaction should be
performed.

Asc2Mfb_StoreNotNullify (in) Signal from ASC indicating whether an update or nullify
transaction should be performed.

Mfb2Asc_Ack_Request (out) Signal to ASC indicating the requested transaction has
been completed.

Mfb2Out_BusReq_MFB (out) Requests write access to the memory forwarding bus.
Out2Mfb_BusGrant_MFB (in) Indicates that write access has been granted for the

memory forwarding bus.
Mfb2Asc_LoadSnarf (out) Signal to the ASC indicating that an update transaction

has been snarfed.
Mfb2Asc_NullifySnarf (out) Signal to the ASC indicating that a nullify transaction

has been snarfed.
Out2All_ColumnShift (in) Indicates that all time tags must be shifted due to a

column being retired.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OutputTimeTag (in) Time tag used when writing nullify and update

transactions
Rf2All_MemoryData (in) Value currently stored for memory data
Rf2All_MemoryAddress (in) Value currently stored for memory address
Rf2All_MemoryTimeTag (in) Value stored for the last snarfed memory time tag.

Internal Logic:

Diagram not available

VHDL Implementation Issues:

As with the RFBI, the assumption is made in the MFBI that bus transactions cannot be received
and compared in the same cycle. Thus, all bus transactions are registered in the cycle they occur,
and then evaluated in the following cycle.

Note that the MFBI always deals with only one memory address at a time, thus, only one set of
comparators is needed. The least significant bits of the memory address select which of the
memory forwarding busses should be read from / written to.

8.1.4 Memory Backwarding Bus Interface

Purpose:

The Memory Backwarding Bus Interface is used by load instructions to request that values be
retrieved from the memory hierarchy. Memory backwarding requests are sent to the nearest

 27

memory filter unit. The memory filter unit may then satisfy the request from a local buffer, from
the write queue, or from memory.

Entity: eMemoryBackwardingBusInterface
 entities/memory_backwarding_bus_interface_entity.vhd
Architectures: implementation
 architectures/memory_backwarding_bus_interface _architecture.vhd
 debug_imlementation
 debug_architectures/memory_backwarding_bus_interface _architecture.vhd

Component Interactions:

The memory address to be requested comes from the Active Station Register File.
Control signals indicating that a request should be made comes from the AS Control Unit.
Control signals indicating that a request has been made go to the AS Control Unit.

Ports:
Asc2Mbb_Request_Load (in) Signal from ASC indicating that the MBBI should issue a

memory request.
Out2Mbb_BusGrant_MBB (in) Indicates that write access has been granted for the

memory backwarding bus.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_MemoryAddress (in) Memory address to be requested
Mbb2Asc_Ack_LoadReq (out) Signal to ASC acknowledging that a memory request

has been made.
Mbb2Out_BusReq_MBB (out) Requests write access to the memory backwarding bus.
MemoryBackwardingBusses (inout) Bus for requesting memory addresses.

Internal Logic:

Diagram not available

VHDL Implementation Issues:

As with the memory forwarding bus, the memory backwarding busses are interleaved, each
carrying addresses with different values in the least two significant bits.

8.1.5 Predicate Forwarding Bus Interface

Purpose:

The Predicate Forwarding Bus Interface is used to send output predicates and canceling
predicates from branch and branch target instructions. The PFBI also snarfs input predicate and
input canceling predicate forwarding transactions for all instructions.

 28

Entity: ePredicateForwardingBusInterface
 entities/predicate_forwarding_bus_interface_entity.vhd
Architectures: implementation
 architectures/predicate_forwarding_bus_interface _architecture.vhd
 debug_imlementation
 debug_architectures/predicate_forwarding_bus_interface _architecture.vhd

Component Interactions:

The addresses and current values for input predicates and canceling predicate come from the
Active Station Register File.
Newly snafed input predicate values go to the Active Station Register File.
Output predicate and canceling predicate values come from the AS Control Unit.
Control signals indicating that predicate should be forwarded and that snarfing should be enabled
come from the AS Control Unit.
Control signals indicating that predicates have been snarfed go to the AS Control Unit.

Ports:

Asc2Pfb_En_pSnarf (in) Signal from ASC enabling snarfing of the input predicate.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Asc2Pfb_En_cpSnarf (in) Signal from the ASC enabling snarfing for each of the

canceling predicates
Asc2Pfb_Req_Forwarding (in) Signal from the ASC requesting that the output predicate

and canceling predicate be forwarded.
Pfb2Asc_Ack_Forwarding (out) Signal to the ASC acknowledging a forwarding

operation.
Pfb2Out_BusReq_PFB (out) Requests write access to the predicate forwarding bus.
Out2Pfb_BusGrant_PFB (in) Grant of write access to the predicate forwarding bus.
Out2All_ColumnShift (in) Signal indicating all predicate addresses should be

shifted due to a column retiring.

Pfb2Asc_pSnarf (out) Signal to the ASC indicating the input predicate has

been snarfed.
Pfb2Asc_cpSnarf (out) Signal to the ASC indicating the input canceling

predicate has been snarfed.
Rf2All_PredValue (in) Current input predicate value.
Rf2All_PredAddress (in) Current input predicate address.
Rf2All_cPredValue (in) Current input canceling predicate value.
Rf2All_cPredAddress (in) Current input canceling predicate address.
Pfb2Rf_NewpValue (out) Snarfed input predicate value.
Pfb2Rf_NewcpValue (out) Snarfed input canceling predicate value.
Rf2All_ASID (in) Active station index (used to calculate output predicate

and canceling predicate address).
Asc2Pfb_poutValue (out) Output predicate value.
Asc2Pfb_cpoutValue (out) Output canceling predicate value.

 29

PredicateForwardingBus (inout) The predicate forwarding bus.

Internal Logic:

Diagram not available

VHDL Implementation Issues:

No special VHDL considerations.

8.1.6 Processing Element Return Bus Interface

Purpose:

The Processing Element Return Bus Interface monitors the Processing Element Return Bus for
execution results sent back from the Processing Element to this Active Station. It compares the
address on the PERB to the address of this Active Station, and signals the Active Station Control
Unit if there is a match.

Entity: ePEReturnBusInterface
 entities/pe_return_bus_interface_entity.vhd
Architectures: implementation
 architectures/pe_return_bus_interface_architecture.vhd
 debug_imlementation
 debug_architectures/pe_return_bus_interface_architecture.vhd

Component Interactions:

Execution results are sent from the Processing Element.
Execution results are sent to the AS Register File. The AS Address comes from the ASRF
A signal is sent to the AS Control Unit when an execution result is snarfed.

Ports:

Rf2All_ASID (in) Address of the Active Station containing this PEBI
PERBus (tri-out) The Processing Element Return Bus
Perb2Rf_OutputData (out) Execution Result sent to ASRF
Perb2Asc_Executed (out) Signal to ASC to indicate an execution result has been

received

Internal Logic:

 30

PERB

Perb2Rf_OutputData

?=

PERB.bResult

PERB.bASAddress
Asrf2All_ASIDPerb2Asc_Executed

VHDL Implementation Issues:

No special VHDL considerations.

8.1.7 Processing Element Bus Interface

Purpose:

The Processing Element Bus Interface is signaled by the AS Control Unit when an instruction
should be dispatched to the Processing Element for execution. It competes for the Processing
Element Bus and then dispatches the instruction and operands to the PE.

Entity: ePEBusInterface entities/pe_bus_interface_entity.vhd
Architectures: implementation architectures/pe _bus_interface_architecture.vhd
 debug_imlementation debug_architectures/pe
_bus_interface_architecture.vhd

Component Interactions:

Instructions and operands are dispatched to the Processing Element.
Operands and opcodes for instructions come from the AS Register File.
Control signals come from the AS Control Unit
Clock and Reset signals are global.

Ports:

 31

Out2All_SystemClock (in) Clock
Out2All_SystemReset (in) Reset (clears the PEBGranted flip flop)
Rf2All_OperandData (in) Operand values from the AS Register File
Rf2All_PEOp (in) Processing Element op code
Rf2All_ASID (in) Address of the Active Station containing this PEBI
PEBus (tri-out) The Processing Element Bus
Asc2Peb_Req_Execution (in) Signal from ASC to dispatch the instruction
Peb2Asc_Ack_ExecutionReq (out) Acknowledgement to ASC to indicate excution has
 been requested
Peb2Out_BusReq_PEB (out) Bus request signal to PEB arbitration
Out2Peb_BusGrant_PEB (in) Bus grant signal from PEB arbitration

Internal Logic:

P E B

R f 2 A l l _ A S I D

R f 2 A l l _ P E O p

R f 2 A l l _ O p e r a n d D a t a

O u t 2 P e b _ B u s G r a n t _ P E B P e b 2 A s c _ A c k _ E x e c u t i o n R e q

P e b 2 O u t _ B u s R e q _ P E BA s c 2 P e b _ R e q _ E x e c u t i o n

VHDL Implementation Issues:

sReg_PEBGranted and sPEBGranted together synthesize a flip flop used to store Bus Grant signals
from the cycle in which the bus is granted, to the cycle in which the bus signals are enabled. All
connections to the PEB.are tri-stated, using sReg_PEBGranted as the enable.

8.1.8 Active Station Register File

Purpose:

The Active Station Register File contains all state information stored in the active station, except
control state stored in the Active Station Control Unit. The ASRF contains registers for operand,
relay, and output data addresses, and time tags, op codes, active station address, predicates and
canceling predicates and their addresses.

Entity: eASRegisterFile entities/as_register_file_entity.vhd
Architectures: implementation architectures/as_register_file_architecture.vhd

 32

 debug_imlementation debug_architectures/as_register_file
_architecture.vhd

Component Interactions:

Strobe and Reset signals for all registers come from the AS Control Unit.
Opcodes, operand addresses, output address, predicates and their addresses come from the Load
Bus Interface.
New operand and relay values and time tags come from the Register Forwarding Bus Interface.
New output values come from the Processing Element Return Bus Interface.
New input predicate values come from the Predicate Forwarding Bus Interface.
New output predicate values come from the AS Control Unit.
Values contained in the ASRF are made available to all other components.

Ports:

Asc2Rf_Strobe_Rfb2Rf_OperandData (in) Strobe signal for operand data coming from RFBI.
Asc2Rf_Strobe_Lb2Rf_OperandAddress (in) Strobe signal for operand address coming from RFBI.
Asc2Rf_Strobe_Rfb2Rf_OperandTimeTag (in) Strobe signal for operand time tag coming from RFBI.
Asc2Rf_Strobe_Perb2Rf_OutputData (in) Strobe signal for output data coming from PERB.
Asc2Rf_Strobe_Lb2Rf_OutputAddress (in) Strobe signal for output address coming from LBI.
Asc2Rf_Strobe_OutputTimeTag (in) Strobe signal to generate output time tag.
Asc2Rf_Strobe_Rfb2Rf_RelayData (in) Strobe signal for relay data coming from RFBI.
Asc2Rf_Strobe_RelayTimeTag (in) Strobe signal for relay time tag coming from RFBI.
Asc2Rf_Strobe_Lb2Rf_PEOpCode (in) Strobe signal for PE op code coming from LBI.
Asc2Rf_Strobe_Lb2Rf_ASOp (in) Strobe signal for AS op code coming from LBI.
Asc2Rf_Strobe_Lb2Rf_PredAddress (in) Strobe signal for predicate addresses coming from LBI.
Asc2Rf_Strobe_Lb2Rf_PredValue (in) Strobe signal for predicate values coming from LBI.
Asc2Rf_Strobe_Lb2Rf_cPredAddress (in) Strobe signal for canceling predicate addresses coming

from LBI.
Asc2Rf_Strobe_Lb2Rf_cPredValue (in) Strobe signal for canceling predicate values coming from

LBI.
Asc2Rf_Strobe_Lb2Rf_cPredValid (in) Strobe signal for canceling predicate valid bits coming

from LBI.
Asc2Rf_Strobe_Pfb2Rf_NewpValue (in) Strobe signal for predicate values coming from PFBI.
Asc2Rf_Strobe_Pfb2Rf_NewcpValue (in) Strobe signal for canceling predicate values coming from

PFBI.
Asc2Rf_Rst_OperandTimeTag (in) Reset signal to clear operand time tags when a new

instruction is loaded.
Asc2Rf_Rst_RelayTimeTag (in) Reset signal to clear relay time tags when a new

instruction is loaded.
Rfb2Rf_NewOperandData (in) New operand value from RFBI.
Rfb2Rf_NewOperandTimeTag (in) New operand time tag from RFBI.
Rfb2Rf_NewRelayData (in) New relay value from RFBI.
Rfb2Rf_NewRelayTimeTag (in) New relay time tag from RFBI.
Lb2Rf_OperandAddress (in) New operand address from LBI

 33

Perb2Rf_OutputData (in) New output value from PERBI
Lb2Rf_OutputAddress (in) New output address from LBI
Lb2Rf_PEOpCode (in) New PE op code from LBI
Lb2Rf_ASOp (in) New AS op code (pre-decoded from PE op) from LBI
Out2Rf_ASID (in) Address of this AS within Levo.
Lb2Rf_PredAddress (in) New predicate address from LBI
Lb2Rf_PredValue (in) Initial input predicate value from LBI
Lb2Rf_cPredAddress (in) New canceling predicate address from LBI
Lb2Rf_cPredValue (in) Initial canceling predicate value from LBI
Lb2Rf_cPredValid (in) Valid bit for each canceling predicate from LBI
Pfb2Rf_NewpValue (in) New input predicate value from PFBI
Pfb2Rf_NewcpValue (in) New canceling predicate value from PFBI
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OperandData (out) Current operand values
Rf2All_OperandAddress (out) Current operand addresses
Rf2All_OperandTimeTag (out) Current operand time tags
Rf2All_OutputData (out) Current output value
Rf2All_OutputAddress (out) Current output/relay address
Rf2All_OutputTimeTag (out) Current output time tag
Rf2All_RelayData (out) Current relay value
Rf2All_RelayTimeTag (out) Current relay time tag
Rf2All_PEOp (out) Current PE op code
Rf2Asc_ASOp (out) Current AS op code
Rf2Asc_BranchTaken (out) indicates if the last branched executed was taken (1) or

not taken (0). This is actually another name for bit 0 of
Rf2All_OutputData

Rf2Asc_p (out) Latched version of Rf2All_PredValue. This output
follows input values that will change Rf2All_PredValue after
the next clock edge

Rf2Asc_cp (out) Latched version of Rf2All_cPredValue. This output
follows input values that will change Rf2All_PredValue after
the next clock edge

Rf2All_ASID (out) Current address of this AS in Levo
Rf2All_PredAddress (out) Current input predicate address
Rf2All_PredValue (out) Current input predicate value
Rf2All_cPredAddress (out) Current input canceling predicate addresses
Rf2All_cPredValue (out) Current input canceling predicate values
Rf2All_cPredValid (out) Current input canceling predicate valid flags

Internal Logic:

 34

Rfb2Rf_NewOperandData EN

RST

Rf2All_OperandData

Asc2Rf_Strobe_Rfb2Rf_NewOperandData

Out2All_SystemReset

Note: diagram illustrates a sample register. All other registers are realized in a similar fashion.
See implementation notes.

VHDL Implementation Issues:

All of the output signals from the ASRF should be generated as the Q signals from registers,
except the Rf2Asc_* signals, which must be implemented as latches. The output signals of
Rf2Asc_* signals must follow the inputs when any of the strobe signals are asserted, to assure
proper behavior of the ASC.

When a register is attached to multiple input signals, the inputs are connected by a mux, whose
output is selected based on the strobes, and the strobe signals are OR’d together. The muxes
should give priority to signals coming from the LBI. After the LBI signals, priority is arbitrary,
and it is the responsibility of the ASC to assure that only one strobe is active at a time.

Reset signals are synchronous, and take priority of strobe signals. Reset is to all ‘0’s except for
predicate value, which resets to ‘1’.

The ASRF generates the output time tag of the AS by taking the top 5 bits of the ASID, and then
appending to it a special one-hot encoding of the bottom 3 bits. In this encoding “000” maps to
“00000000”; “001” maps to “00000001”; “010” maps to “00000011”; and so on, up to “111”
mapping to “11111111”.

8.2 Output from the Xilinx Alliance Synthesis Tools

 35

8.2.1 Active Station

Excepted from the Xilinx Alliance map report for the Active Station

Number of Slices: 1,110 out of 12,288 9%

Number of Slices containing
unrelated logic: 0 out of 1,110 0%

Total Number Slice Registers: 735 out of 24,576 2%
Number used as Flip Flops: 725
Number used as Latches: 10

Total Number 4 input LUTs: 1,950 out of 24,576 7%
Number used as LUTs: 1,941
Number used as a route-thru: 9

Number of bonded IOBs: 1,031 out of 660 156%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 21,621

8.2.2 Register Filter Unit (Column Head)

Excepted from the Xilinx Alliance map report for the Column-Head Register Filter Unit

Design Summary:

Number of errors: 0
Number of warnings: 36
Number of Slices: 4,615 out of 12,288 37%
Number of Slices containing

unrelated logic: 0 out of 4,615 0%
Total Number Slice Registers: 3,189 out of 24,576 12%

Number used as Flip Flops: 3,139
Number used as Latches: 50

Total Number 4 input LUTs: 7,880 out of 24,576 32%
Number used as LUTs: 7,843
Number used as a route-thru: 37

Number of bonded IOBs: 301 out of 660 45%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 75,207

8.2.2 Register Filter Unit (standard)

Excepted from the Xilinx Alliance map report for the standard Register Filter Unit

Design Summary:

Number of errors: 0
Number of warnings: 4
Number of Slices: 3,818 out of 12,288 31%
Number of Slices containing

unrelated logic: 0 out of 3,818 0%
Total Number Slice Registers: 1,733 out of 24,576 7%

Number used as Flip Flops: 1,682

 36

Number used as Latches: 51
Total Number 4 input LUTs: 7,314 out of 24,576 29%

Number used as LUTs: 7,308
Number used as a route-thru: 6

Number of bonded IOBs: 296 out of 660 44%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 60,040

	1 Introduction
	2 Active Station
	2.1 Load Bus Interface
	2.2 Register Forwarding Bus Interface
	2.3 Predicate Forwarding Bus Interface
	2.4 Register Backwarding Bus Interface
	2.5 Memory Forwarding Bus Interface
	2.6 Memory Backwarding Bus Interface
	2.7 Processing Element Bus Interface
	2.8 Processing Element Return Bus Interface
	2.9 Active Station Register File
	2.10 Active Station Control Unit

	3 Register Filter Unit
	4 HDLevo Test Harness
	4.1 Processing Elements
	4.2 Levo Testbed
	4.3 MIPS Assembler

	5 Synthesis Results
	6 Conclusions
	7 References
	8 Appendices
	8.1 Active Station Component Design Reports
	8.1.1 Register Forwarding Bus Interface
	8.1.2 Register Backwarding Bus Interface
	8.1.3 Memory Forwarding Bus Interface
	8.1.4 Memory Backwarding Bus Interface
	8.1.5 Predicate Forwarding Bus Interface
	8.1.6 Processing Element Return Bus Interface
	8.1.7 Processing Element Bus Interface
	8.1.8 Active Station Register File

	8.2 Output from the Xilinx Alliance Synthesis Tools
	8.2.1 Active Station
	8.2.2 Register Filter Unit (Column Head)
	8.2.2 Register Filter Unit (standard)

