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Abstract1 
Levo is a prototype uniprocessor whose goal is to achieve ILP in the 10’s. HDLevo is an effort to 
create VHDL models of key components of the Levo prototype as a verification of the feasibility 
of constructing Levo, and to provide very accurate hardware size estimates for those 
components.  To date, models of the Active Station and the Register Filter Unit have been 
completed, along with a behavioral VHDL test harness.  Gate and transistor counts for the 
completed hardware models are presented.  The test environment and methodology are 
explained.  
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1 Introduction 
 

The Levo project seeks to develop a new architecture for uniprocessors, which will allow 
very high levels of parallelism to be exploited, without requiring any changes to existing 
instruction set architectures.  The goal of Levo is to develop a MIPS R3000 compatible 
processor, which can achieve an average of 20 instructions executed per cycle.  Levo can achieve 
such high levels of ILP by using a novel execution model called resource flow computing.   
 Resource flow computing is an execution architecture whose guiding philosophy is to 
attempt to utilize all available execution resources in every cycle.  Instructions are speculatively 
executed if an execution resource is available, even if the inputs for that instruction are not yet 
available.  Instead the inputs to the instruction are speculated, branch direction and data values 
are predicted and the instruction is speculatively executed.  Later, when the inputs of the 
instruction do become available, if it is discovered that the speculative execution result is 
incorrect, instructions are re-executed as necessary.  The name “resource flow” comes from the 
mental image of processor resources “flowing” to active stations that have an instruction to 
execute (possibly speculatively), rather than being driven by the availability of final committed 
values for an instructions inputs.  The availability of resources drives execution, not the 
availability of inputs. 

In Levo, the traditional instruction reorder buffer is replaced by an array of active stations 
called the execution window.  The execution window is organized into columns, and the columns 
are further sub-divided into 
sharing groups.  The 
HDLevo model realizes a 
machine with 8 columns of 
4 sharing groups, with 8 
active stations per sharing 
group, for a total of 256 
active stations.  These 
dimensions represent only 
one among many of the 
possible machine 
configurations being studied 
in the Levo research effort, 
however, results thus far 
have been promising for 
such a setup.  Each active 
station tracks the state of a 
single instruction in the 
processor’s static execution 
path.  Figure 1 shows a 
diagram of a sharing group. 

The execution window is loaded with instructions starting with the first active station, 
and further instructions are loaded into the execution window following the most likely path 
through a process’s static control graph.  When all the instructions in the first column have fully 
executed, the instructions in the column are committed, i.e., writes to the memory system are 
completed, processor exceptions are raised, and the column is retired.  Once a column has been 

Figure 1 – Internals of a Sharing Group.  This figure shows the 
relationship between a sharing group of active stations, a register filter 
unit, and a processing element. Interconnections to the memory system 
(forwarding and backwarding busses) are omitted in this figure.
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retired, all the columns in the system are renamed, and the now empty column is loaded with the 
next set of instructions.   
 In addition to a set of active stations, each sharing group also contains a single processing 
element.  A processing element is a set of execution resources, such as an ALU and FPU, and 
may be pipelined, or multiple-issue.  In HDLevo, each processing element is a single-issue 
processor that can execute an instruction or perform an address calculation in one cycle.  As 
there is one processing element per sharing group, there are a total of 32 processing elements in 
HDLevo.  
 The active station is the key component of Levo, responsible for the proper execution of a 
single dynamic instruction from loading to retirement.  The active station is similar in concept to 
the reservation station described in [1].  The role of an active station is to monitor a set of 
“forwarding” busses for inputs to its instruction, and, as updates to each input are received, 
dispatch the instruction for execution.  Once an execution result is returned from the processing 
element, the active station broadcasts the output of the instruction on the forwarding busses.  In 
this way, active stations pass their results to one another over the forwarding busses.  One of the 
key features of the forwarding bus architecture is that the length and complexity of each 
forwarding bus grows linearly with the number of active stations.  This is in contrast to the 
complexity of many schemes for explicitly calculating the data and control dependencies among 
instructions, whose complexity generally grows quadratically with the number of instructions.  
By allowing instructions to execute speculatively and then re-execute when correct inputs 
become available, Levo does not have to precalculate the dependencies between instructions; 
incorrect results are simply discarded and recalculated.  
 As the number of active stations increases, so too would the number of loads on the 
forwarding busses.  As processor clock speeds continue to increase, it is the distance signals 
must travel on bus lines and the number of capacitive loads that limits clock rates – more so than 
the complexity of the logic a signal must pass through.  Thus, it is unrealistic to imagine a single 
forwarding bus that can connect 256 or even greater numbers of active stations, and still carry 
signals with reasonably delay.  Additionally, since in any particular cycle, many active stations 
will generate outputs to the forwarding busses, bus contention would become a problem.  Thus, 
for each of the kinds of forwarding busses in the system, the bus is divided into segments called 
forwarding spans.  Each forwarding span connects a subset of the total number active stations in 
the processor.  Some bus systems are local to a single sharing group.  Others may span multiple 
sharing groups or an entire column.  At the boundaries between consecutive forwarding spans sit 
filter units.  Each filter unit acts as a buffer, receiving signals on its input bus, and competing 
with other bus masters on its output bus to forward the buffered signals.  Thus, it costs at least 
one cycle for a bus signal to move from one forwarding span to the next.  Longer forwarding 
spans mean the total latency for a signal to reach all active stations is lower.  Shorter forwarding 
spans mean fewer loads on each bus and less capacitance in the bus, resulting in better clock 
speeds.   
 Filter units also have additional duties beyond simply relaying signals from one 
forwarding span to the next.  For example, the register filter units maintain copies of the values 
of each of the MIPS architectural registers in Levo, and the memory filter units interact with the 
memory hierarchy to perform loads and stores.   

The remainder of this technical report describes the details of the HDLevo model 
components that have been completed to date and the test environment for verifying proper 
execution.  Section 2 describes the details of the active station component and its HDLevo 
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realization.  Section 3 describes the register filter unit.  Section 4 describes the HDLevo test 
harness.  Section 5 presents hardware size results for the synthesis of the active station and 
register filter unit.  Section 6 presents some conclusions. 
 
2 Active Station 
 

As described in the introduction above, the active station is the component of the Levo 
machine which tracks the inputs and outputs of an instruction and competes for the execution of 
that instruction.  Each active station is connected to 8 bus systems, the load bus (LB), register 
forwarding bus (RFB), predicate forwarding bus (PFB), register backwarding bus (RBB), 
memory forwarding bus (MFB), memory backwarding bus (MBB), processing element bus 
(PEB) and processing element 
return bus (PERB).  The 
active station can be thought 
of as a type of switch board 
and memory – it listens for its 
inputs on the various busses, 
updates its state based on 
them, and then generates bus 
signals to communicate with 
other parts of the Levo 
processor. The HDLevo active 
station model is organized as 
a set of sub components, each 
of which is responsible for 
interfacing to one of these bus 
systems.  In addition to these 
interface components, the 
active station model contains one component which stores all the execution state (operand and 
result values and addresses), and a final component which generates control signals and 
coordinates the efforts of all the other components.  

The following subsections detail each sub-component within the active station model.  
The concepts and details of the operation of the Levo processor as a whole are introduced in the 
discussion of the relevant sub-components.  For most components, a component design report 
can be found in the appendices detailing the input and output signals from the component and 
explaining specific VHDL implementation issues regarding the component.  

 
2.1 Load Bus Interface 
 The load bus connects each active station to the load buffer.  The instruction fetch unit 
continually loads new instructions from memory following the most likely path across branches 
and places those instructions in the load buffer.  When a column is retired, the entire column is 
loaded with a new set of instructions in a single cycle via the load bus.  The load bus carries the 
instruction op code for the active station along with branch prediction values from the fetch 
hardware.  In the HDLevo model, instruction op codes are partially decoded by the fetch 
hardware, and a decoded op code is transmitted to the active station, along with additional 
predication information used to control instruction execution. 

Figure 2 – Subcomponents within the Active Station
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 The HDLevo load bus is a total of 100 bits wide.  There are 32 parallel load busses in 
HDLevo, such that an entire column of active stations can be loaded simultaneously.  The load 
busses for a particular row of active stations are shared across the columns.  The total width of 
the load bus breaks down as follows.  32 bits carry the original undecoded MIPS R3000 op code.  
The intention of HDLevo is to eventually use real MIPS processor cores as the processing 
elements, thus it is advantageous to include the full op code in addition to the partial decodings.  
Note that in an optimal implementation of Levo, some of the duplicate information carried in 
these 32 bits could be eliminated.  4 bits carry a simplified op code for the active station, used to 
distinguish ALU, branch, load, store, etc instruction classes.  10 bits carry the two register 
operand addresses for the instruction.  One or both addresses may be unused.  5 bits carry the 
output register address of the instruction, which again may not apply to all instructions.  49 
additional bits carry predication information for the active station. These 49 bits are composed 
of: a predicate address (8 bits), an initial predicate value (1 bit), an array of four canceling 
predicate addresses (8 bits each), an array of four initial canceling predicate values (1 bit each), 
and four 1 bit flags to indicate if the canceling predicates are in use.  See the section on the 
Predicate Forwarding Bus below for a discussion of predication in Levo and details on how these 
predicate addresses and values are used. 
 
2.2 Register Forwarding Bus Interface 
 The register forwarding bus system allows the output values of assignment instructions to 
be forwarded from one active station to the next.  Each active station is connected to a number of 
RFBs;, in the case of the HDLevo model, 4.  One of these RFBs is both read and written to, the 
others are only monitored.  Each RFB has a forwarding span (measured in number of sharing 
groups) equal to the number of RFBs.  The start of each RFB is offset by one sharing group from 
the previous RFB.  Thus each active station monitors 4 different RFBs, each having overlapping 
forwarding spans.  One of these RFBs has its origin in the sharing group to which the active 
station belongs.  This RFB (designated as index 0 relative to the active station) is the RFB to 
which the active station may write. A single transaction on an RFB transmits three pieces of 
information: the address of the register (5 bits), its value (32 bits), and a time tag (nominally 
need only be 8 bits, but is decoded to 13 for efficiency, as explained below).  Time tags as they 
are used on the RFB are a key innovation of the Levo processor architecture. 
 A time tag is a designation for the active station that originated a particular register value.  
When an active station forwards a value on an RFB, it also forwards its address in the instruction 
window as a time tag.  Other active stations that observe the forwarding transaction on the RFB 
compare the time tag of the forwarded address and value to the time tag of any value they have 
previously observed and used for computation.  If the time tag of the forwarding transaction is 
equal to or newer than the time tag of the previously observed value, the receiving active station 
captures or snarfs the new value and discards any computations that have been performed with 
the previous value.  A higher time tag indicates that a value was generated by an instruction 
further forward in the dynamic instruction stream.  For correct operation, each active station 
must compute its final output value using the output from nearest preceding instruction that 
writes to its operands.   
 As columns of instructions are retired from the instruction window and columns are 
renamed, simultaneously all time tags in the system are decreased by the number of active 
stations retired (the number of active stations in a column).  In this way, as an active station’s 
index in the instruction window changes due to its column index changing, so, too, do the time 
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tags of every value in the instruction window that originated at that active station.  Time tags 
decrease to a minimum time tag of 0, indicating a value that originates from an instruction prior 
to any instruction in the execution window.  Note that a time tag of 0 indicates that a particular 
value is no longer speculative – the instruction that generated it has retired. 
 In the HDLevo model, time tags are realized as the combination of an encoded binary 
index for the sharing group in which the originating active station is a member (requiring 5 bits), 
plus a one-hot encoding of the active stations index within its sharing group (an additional 8 bits 
for a total of 13).  The advantage of this partially decoded format lies in the nature of the RFBs 
within a particular sharing group. Active stations must be able to perform many fast and 
hardware efficient comparisons on time tags.  It is possible for the same register address to 
appear on all four RFBs visible to a particular active station in the same cycle with different 
values and different time tags.  In this situation, time tags across all four RFBs must be compared 
as well as the time tag of any previously stored value.  Additionally, since an RFB is a single tri-
stated bus within a sharing group, an active station may observe a value with a time tag higher 
than its own at its inputs, and must avoid snarfing these values.  The partially decoded time tag 
allows for optimizations of this comparison hardware. 
 The register forwarding bus interface is perhaps the single most complex sub-component 
of the active station.  This is due to the number of time tag comparisons necessary to ensure that 
the component always selects the correct RFB from which to snarf a value, and avoids snarfing 
values when unnecessary.   
 A fundamental assumption in the HDLevo model is that insufficient time is available in a 
single clock cycle for values to propagate over a bus, and for time tag comparisons (or other 
computation) to be performed.  Thus, each register forwarding bus transaction must be registered 
upon reception in the RFB interface. Then, in the following clock cycle, the values from the bus 
transaction are passed through the comparison hardware to determine if the active station should 
snarf the bus transaction for one or both of its operands, or as its relay value. (Relay values and 
their use are discussed in the section on the Predicate Forwarding Bus below.  For now, they can 
be considered as a third operand to an assignment instruction). 
 The register forwarding bus interface must contain one comparator to match operand 
addresses and bus transaction addresses for each combination of bus and operand, for a total of 
12 5-bit comparators.  An active station is only interested in snarfing values that are for its 
operand’s register addresses, and ignores all other bus transactions. 
 Once it has been established that one or more RFBs carry register addresses that the 
active station is interested in, the time tags of the bus transactions must be considered.  First, 
each transaction time tag must be compared against the output time tag of the active station 
itself.  If the transaction’s time tag is greater than the output time tag of the active station, then 
the transaction is the output of an instruction after this active station’s, and should not be snarfed.  
Note that this comparison is only necessary for RFB 0 (other RFBs can only be written to by 
active stations which precede this active station, as they must be in preceding sharing groups).  
Further, because the active station index portion of a time tag is decoded, this comparison can be 
performed in a very hardware efficient manner. 
 With these two conditions met, the time tag must be compared against the time tags of 
previously snarfed operand values.  Only bus transactions with equal or greater time tag will be 
snarfed. Finally, after all these time tag comparisons, it is still possible that more than one RFB 
carries a transaction appropriate for snarfing.  Among these candidates, the transaction with the 
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greatest time tag must be selected.  Thus, another set of time tag comparators is required, 
comparing each combination of RFBs. 
 In addition to address and time tag comparators, HDLevo also compares the value in a 
bus transaction to any previously snarfed operand values, and suppresses a snarf when the values 
match.  This comparison is not necessary for correct execution, but is essential for performance 
reasons, as every snarf forces a re-execution of the active stations instruction. 
 The register forwarding bus interface is also responsible for writing output values to RFB 
0 when directed to do so by the active station’s control unit. The hardware required to implement 
this is a set of tri-state drivers and bus request logic, and is small relative to the hardware 
necessary for snarfing. 
 
2.3 Predicate Forwarding Bus Interface 
 One type of instruction that has largely been omitted in the above discussions is the 
branch instruction.  In general, all branches are predicted at fetch time, and the instruction 
window is loaded with instructions following the predicted path of execution.  In the case of 
backwards branches (loops), this indicates that a particular instruction in a program may appear 
in several active stations in the instruction window; each occurrence corresponding to a different 
iteration of the loop.  A misprediction of the end of such a loop, or a misprediction of a branch 
which targets instructions outside the instruction window, results in the remainder of the 
instruction window having to be flushed and reloaded with instructions starting at the correct 
address.  Levo strives to avoid this expensive situation using two key novel approaches.  The 
first of these approaches is veiled-explicit predication, and the second of these is disjoint eager 
execution (DEE) [2].  The latter technique supplements the instruction window with additional 
columns of active stations called DEE-columns, which are loaded with instructions following the 
non-predicted path of execution at a particular branch.  Should execution of the branch determine 
that it was indeed mispredicted, the contents of the DEE column are copied into the instruction 
window and only a minimum of cycles are lost.  The intuition behind DEE is that an instruction 
that appears on the non-predicted execution path for the first branch in the execution window is 
in many cases more likely to be executed than the instruction at the 256th position in the 
execution window.  The 256th instruction may only be executed if perhaps 20 or more branch 
predictions are correct, while the DEE instruction’s result may be required if only a single 
prediction is incorrect.  The degree to which DEE may be able to improve performance depends 
on the frequency and accuracy of branch prediction. DEE is not included in the current HDLevo 
test harness, and no further discussion of its implementation is made in this report.  DEE is 
planned for addition in the next version of HDLevo. 
 Veiled explicit predication, on the other hand, is essential to Levo and is modeled in 
HDLevo.  Predication refers to the well-known technique of replacing forward conditional 
branches with an assignment to a boolean predicate register, and then conditioning the execution 
of instructions between the branch instruction and its target (the branches domain) on this 
predicate.  For example, the sequence of instructions: 

10 if  (a == b) goto 30 
20 c := d 
30 … 

can be replaced with the following: 
10 pred := (a == b)  
20 if (not pred) then c := d 
30 … 
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In many modern instruction set architectures (for example the Intel IA-64), predicate registers 
appear as part of the programmer-visible set of architectural registers, and instructions must be 
explicitly assigned a predicate register address.  Hence, predication is called visible explicit.  In 
the Levo architecture, however, forward branch instructions with a domain smaller than the 
instruction window are automatically converted into predicated assignments by the instruction 
loading hardware, and the predicate register addresses may not be directly selected by the 
programmer.  Therefore, this novel form of predication is called veiled explicit predication.   
 The instructions in the instruction window can be divided into three classes, forward 
branch instructions eligible for predication (subject to the domain size restriction; namely that 
the branch and its target will both appear in the instruction window, that is, they are less than 256 
instructions apart)), targets of such a branch, and any other instructions.  Note that it is possible 
for an instruction to be both a forward branch, and itself a target, in which case it belongs to both 
classes.  As the instruction fetch hardware loads each instruction into the execution window, it 
assigns to each instruction an input predicate address, called its pin.  Initially, this pin is a special 
code indicating an always-true predicate.  When a branch instruction is encountered, the branch 
is assigned two output predicate addresses. The first is called the branch’s output predicate or 
pout.  The value of this predicate will be the inverse of the result of the branch’s condition, once it 
is resolved, logically ANDed with the branch’s pin.  The second output from a branch is called its 
canceling predicate or cpout, and its value is the branches condition ANDed with the branch’s pin.  
A particular pout address and cpout address always correspond to one another (ie the same address 
is used for both).  Any instruction following a branch, including another branch, uses the pout of 
the branch as its pin.  Expressed in words, this means that the input predicate controlling the 
execution of instructions following a branch is the output predicate of that branch.  Following 
instructions in the branch’s domain will only be executed if the branch is not taken. 
 When a 
second branch 
follows the first, its 
pout will only be true 
if both its own 
condition is false (it 
is not taken) and the 
previous branch’s 
condition was false 
(its pin is true).  In 
this way, branch 
condition chain their 
predicates together, 
and instructions 
following the second 
branch are 
conditioned upon the 
result of both 
comparisons.  
Branch targets, on 
the other hand, 
should be executed 
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in either of two cases.  First, if their pin is true, indicating that they were reached from the 
previous instruction.  However, a branch target should also be executed if a branch that targets it 
is taken.  When a branch is resolved as taken, its cpout will be true.  Thus, in addition to having a 
pin input, branch targets also have one cpin input for every branch that targets them.  A branch 
target is executed if its pin or any of its cpin inputs is true.  Furthermore, instructions following 
the branch target also must execute.  Therefore, the branch target instruction also generates a 
pout, and instructions following it use this value as their pin.  Using these rules, any sequence of 
forward branches can be converted into veiled explicit predication.  Figure 3 shows a diagram of 
veiled explicit predication. 
 What is needed in HDLevo, then, is a hardware realization for the assignment of 
predicate and canceling predicate addresses, a method for communicating predicate values from 
active station to active station, and a protocol to follow in the case that an active station’s input 
predicate is false.  Assignment of predicate and canceling predicate addresses occurs in the load 
hardware, and is loaded into the active station on the load bus as mentioned above.  Every 
instruction has an input predicate address, either address 0 for instructions with an always-true 
input predicate, or the active station time tag of the nearest preceding branch or branch target.  
Branch instructions have an output predicate and output canceling predicate address equal to 
their active station index.  Branch targets have a set of input canceling predicate addresses, each 
corresponding to the address of the branch’s source.  In HDLevo, four canceling predicates are 
supported per instruction.  If a particular instruction is targeted by more than four branches, the 
load hardware must add NOP instructions to the instruction window ahead of the targeted 
instruction, to be able to support the additional canceling predicate requirement.  Note that as 
columns are retired from the instruction window, the column portion of active station time tags 
change, and predicate addresses throughout the execution window must also be adjusted to 
remain synchronized. 
 Predicate values are communicated from one active station to the next on the predicate 
forwarding bus.  The predicate forwarding bus is in many respects similar to the register 
forwarding bus.  However, in the current HDLevo model, there is only one predicate forwarding 
bus, not four in parallel as for the RFB.  The forwarding span of each predicate forwarding bus 
segment is a full column, and predicate filter units (which forward predicate values from one 
span to the next, and arbitrate the bus for their column) sit at the top of each column.  The 
predicate forwarding bus is 10 bits wide.  Eight bits identify the predicate address for the bus 
transaction (the index of the initiating active station), one bit indicates the predicate value, and 
the other the canceling predicate value.  Note that predicate and canceling predicate values are 
always generated and forwarded together.  A taken branch generates a predicate value of ‘0’ and 
a canceling predicate value of ‘1’.  A not-taken branch generates a predicate of ‘1’ and a 
canceling predicate of ‘0’.  A branch instruction whose input predicate is ‘0’ (that is to say, that 
is itself skipped by other branches), generates predicate and canceling predicate of ‘0’.  A branch 
target generates a predicate of ‘1’ if either its input predicate, or any of its canceling predicates 
are ‘1’, and always generates a canceling predicate of ‘0’. 
 Snarfing predicates takes very little hardware, as only the address must be compared.  
The complexity of predication is not in the hardware of the predicate forwarding bus interface.  
The difficulty of predication is illustrated by the following example. 
 Consider an assignment instruction, say R3 = R1 + R2.  Like any other instruction, this 
assignment is predicated, and an initial predicate prediction is loaded into the active station along 
with the instruction.  Suppose that the initial prediction of the predicate is ‘1’, and therefore, the 
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assignment instruction is executed, and forwards an output value for R3 equal to R1 + R2.  Now, 
suppose that a branch prior to this instruction resolves as mispredicted, and the active station 
receives a new predicate value of ‘0’.  The active station must suppress its execution.  However, 
the instruction has already executed, and its output value has already been sent on to other active 
stations, which are now potentially performing calculations with an incorrect input.  These other 
active stations need the value of R3 prior to the addition of R1+R2. 

In order to correct this situation, each active station maintains a relay value, along with 
its operands and output value.  The relay value of an instruction is the value its output register 
had prior to the instruction’s execution.  This relay value is snarfed from the register forwarding 
bus just as operand values are, and may be updated over time as previous active stations execute 
or re-execute.  When an assignment instruction’s predicate changes from a ‘1’ to a ‘0’, the 
assignment instruction outputs its relay value as if it was the instructions output value.  This will 
force any later active stations, which have performed computations using the incorrect register 
value to recalculate their outputs using the correct value.  If an update for an active station’s 
relay value arrives while its input predicate is ‘0’, it must relay the new value.  In this way, 
correct execution is ensured. 

 
2.4 Register Backwarding Bus Interface 

In order for an active station to compute its output values, it must observe its operands on 
a register forwarding bus.  In general, the active station will see its operands and outputs because 
of forwarding operations that are initiated by another active station.  However, it is possible that 
an active station’s input is not written to by any other instruction earlier in the window.  For 
example, a register may be storing a variable that has not been written to for several hundred 
machine cycles (many more instructions than fit in the execution window).   

To avoid the situation where an active station “starves” waiting for a register to be 
forwarded to it, each active station makes an explicit request for all of its operands.  This request 
is made on the register backwarding bus.  Each active station is connected to exactly one RBB.  
This RBB connects all the active station in a sharing group to the register filter unit situated at 
the top of the sharing group.  Active stations compete for the RBB to request their operands. The 
register filter unit monitors these requests and compares them against values that it has observed 
on the bus, filling any requests that have not been filled by prior forwarding operations, using the 
most up-to-date value the register filter unit has observed. 

In the current iteration of HDLevo, the register backwarding bus interface of each active 
station is very simple: it requests each of the instruction’s operands one by one, and pays no 
attention to requests made by other active stations.  The register filter unit ensures that requests 
for a particular address are filled only once, even if requested by multiple active stations.  
Contention for the register backwarding bus has not been a bottleneck in current HDLevo 
simulations. 

The register backwarding bus is 5 bits wide, carrying a single register address per cycle.  
The register filter unit acts as the bus arbiter. 

 
2.5 Memory Forwarding Bus Interface 

As with registers, memory addresses that are written by a store instruction are often used 
by load instructions shortly after the store.  Levo exploits this temporal locality by forwarding 
the output of store operations on memory forwarding busses, so that they can be snarfed by later 
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loads.  Additionally, when a load requests an address (see the next section on the memory 
backwarding bus), the requested value is sent to the load on the memory forwarding bus system. 

In HDLevo, there are four memory forwarding busses. The four busses are interleaved, so 
a particular double-32 bit word in memory may only appear on one of the four busses.  Memory 
filter units (much like the register filter units) sit at the top of each column, forwarding memory 
operations from previous columns. 

When a store operation is executed, the value to be stored is written by the active station 
to the appropriate memory forwarding bus based on the low order bits of the address.  Along 
with the value, the time tag and the necessary bits of the address are written, and a flag indicating 
that the forward is a store operation.  If the store operation is re-executed, it writes to the memory 
forwarding bus again with the same time tag.  If any load operation after the store is waiting for 
the same address, it will snarf the stored value.  At the boundary between columns, a memory 
filter unit receives the store operation. 

The memory filter unit has two duties.  First, it forwards the written value on to the 
subsequent column’s memory forwarding bus.  Second, it caches the value locally, so that it can 
satisfy any requests for that address that arrive on the memory backwarding bus.  The cached 
writes will be written to the memory hierarchy when the column containing the memory filter 
unit is retired.  If a second forward occurs for the same address, the value cached in the memory 
filter unit is overwritten. 

The memory system must also account for two other possible changes to a cached write.  
First, a store instruction may be predicated false, that is to say, it may receive an updated 
predicate value indicating it should be skipped by branches.  Secondly, since many memory 
operations calculate their target address based on a register operand, and this register operand 
may change, it is possible that a write on the memory bus may be issued with an incorrect 
address.  In both situations, a write operation must be “rolled back”, and its effects cancelled.  In 
order to facilitate this, the memory forwarding bus system supports a nullify operation.  When 
issuing a nullify, the active station writes the address and time tag to be nullified, and a flag 
indicating that a nullify transaction is occurring to the memory forwarding bus.  The memory 
filter unit receives this nullify, passes it on to the next column, and then deletes any cached value 
for that address.  If an active station snarfs a nullify transaction, it re-requests its value on the 
memory backwarding bus.   

The memory forwarding bus interface in HDLevo has a number of duties.  If the active 
station is a load instruction, it must monitor the appropriate memory forwarding bus, based on 
the load address, waiting for the value to arrive either from the memory hierarchy or from 
another active station.  For a store instruction, the memory forwarding bus must issue forwarding 
transactions when the stores output and address are available, and issue nullify transactions when 
the write address changes or the instructions input predicate changes from true to false.  
However, since only one of the memory forwarding busses is used at a time per active station 
(based on its address) very few comparators are required relative to the register forwarding bus 
interface, which must always monitor all busses. 

 
2.6 Memory Backwarding Bus Interface 

Much like the register backwarding bus interface, the memory backwarding bus interface 
is used to request instructions’ input values.  Like the memory forwarding busses, there are four 
interleaved memory backwarding busses.  Load instructions issue a request on the memory 
backwarding bus once they calculate their load address.  These requests are received by the 
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preceding memory filter unit.  The memory filter unit firsts attempts to satisfy the load request 
with values from its local cache.  If there is no match, the memory filter unit issues the load to 
the remainder of the memory hierarchy.  Once the loaded value is available from memory, the 
memory filter unit forwards the requested value on the appropriate memory forwarding bus, with 
a time tag of 0 (indicating a value that is older than any instruction in the instruction window). 

Currently, there is no mechanism by which loads of incorrect addresses are “canceled”, 
however, such an enhancement may be possible in a future version of HDLevo. 

 
2.7 Processing Element Bus Interface 

The processing element bus connects each active station in a sharing group to the 
processing element belonging to that sharing group.  Active stations dispatch instructions for 
execution by a PE on the processing element bus.  The active station forwards the op code, 
operand values, and its own address within the sharing group.  The bus arbitration of the 
processing element bus favors granting the bus to active stations with low indices, as these 
instructions results are more likely to be needed by later instructions and less likely to require re-
execution. 

In HDLevo, the processing element bus carries two 32 bit operands, one 32-bit op code, 
and a 5 bit active station index. 

 
2.8 Processing Element Return Bus Interface 

The processing element return bus returns results that have been calculated by the 
processing element to the appropriate active station.  In HDLevo, all calculations are assumed to 
take only a single cycle.  However, the HDLevo model also can support other execution models, 
where the processing element may by pipelined or multi-issue.  Results on the processing 
element return bus are accompanied by the index of its destination active station. 

 
2.9 Active Station Register File 

The active station register file is not a register file in the traditional sense; it is the name 
of the component of the active station which stores all of the state of the active station.  The 
register file stores all the operands, outputs, addresses, and time tags of the register station. 

The register file stores a total of 377 bits of information. 50 bits each are for two 
operands (32 bit value, 5 bit register address, and 13 bit time tag).  An additional 5 store the 
output address, 32 for the calculated output value, 32 for the relay value, and 13 to store the time 
tag of the last observed relay value.  The time tag of the output of the active station is also 
calculated in the register file, based on the active station’s current index in the window.  32 bits 
store the instruction op code for the processing element, and 4 store the instruction class for the 
active station’s control unit.  Another 32 bits store the memory address for load and store 
instructions. There are 8 bits for each of the predicate addresses (1 input predicate and 4 
canceling predicates), 1 bit to store each of these 5 predicates, and 4 1-bit flags to indicate if each 
canceling predicate is in use.  In order to support 64-bit floating-point operations, an additional 
32 bits are required for each of the operands, relay, and output data registers.  In the HDLevo 
model, all of these values are stored in flip-flops. 

 
2.10 Active Station Control Unit 

The active station control unit is the final component of the active station. This 
component generates control signals for the remainder of the active station based on the active 
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station’s 4-bit op code class, the state of the input predicates (both stored in the register file), and 
the present state of a number of small internal state registers.  The internal state registers indicate 
whether the data registers in the active station register file contain valid data, and direct the 
actions of the active station.  These state registers are all 1 bit, and track whether a certain 
condition is true or not.  The actions of the active station are determined by combinational logic 
based on the op code class and these state registers. Each of these state registers is now 
examined. 

There are three state bits which track whether or not operand and relay values have been 
requested on the register backwarding bus.  When an instruction is loaded into the active station, 
these state bits are cleared.  Each bit is set when the corresponding operand or relay is requested 
on the register backwarding bus.  Note that it may require several cycles for a request to be 
issued on the RBB due to bus contention.  An instruction which is currently predicated true (its 
input predicate or any input canceling predicate is true) that requires an operand may not retire 
until the corresponding state bit is set.  An instruction that is predicated false may not retire until 
the state bit indicating that the relay value has been requested is set.  This ensures that all 
required values will be requested before the column can retire.  If a value is requested and has 
not been supplied to the active station, the register filter unit owning the register backwarding 
bus will be aware of this and will prevent the column from retiring.  In the HDLevo VHDL 
model, these state bits are referred to as the sReg_OperandRequested and sReg_RelayRequested state 
registers. 

The sReg_OutputValid state register indicates whether the data value stored in the register 
file’s output register is valid.  This state bit is reset upon load, and upon any operand snarf.  It is 
set whenever an execution result returns from the processing element.  sReg_OutputValid is always 
set for NOP instructions. 

The sReg_OutputDirty state register indicates whether an updated value in the output data 
register has been forwarded on the register forwarding bus or not.  sReg_OutputDirty is cleared 
when the active station is loaded and anytime the output data register is successfully forwarded 
on the register forwarding bus system.  sReg_OutputDirty is set whenever a result is returned from 
the processing element and the active station is predicated true.  sReg_OutputDirty is also set 
anytime the active station’s input predicate changes from false to true.  The active station may 
not retire while sReg_OutputDirty is set. 

The sReg_RelayDirty state register indicates whether the data value stored in the register 
files relay register requires forwarding.  Note that this is only the case when the active station is 
predicated false.  sReg_RelayDirty is set when a new relay value is snarfed, or when the active 
station’s input predicate changes from true to false.  sReg_RelayDirty is cleared on load and 
whenever the relay value is forwarded on the register forwarding bus.  The active station may not 
retire if sReg_RelayDirty is set and the active station is predicated false. 

sReg_ExecutionPending is set whenever the active station issues its instruction for execution 
to the processing element.  It is cleared when results are returned from the processing element. 

sReg_PendingExecutionStale is set if a snarf of any operand value occurs while 
sReg_ExecutionPending is set.  This indicates that an operation has been sent to the processing 
element for execution, but that the operand values that were sent have since been updated.  The 
execution result must be discarded.  The operation can be issued for re-execution immediately.  
If a processing element takes more than one machine cycle to return an execution result, 
sReg_PendingExecutionStale must be replaced with an up-down counter sufficient to count the 
maximum number of cycles an execution could take.  Thus, when repeated snarfs occur one after 
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the next, sReg_PendingExecutionStale counts the number of invalid results that will return from the 
processing element, before the final, valid result is returned.  sReg_OutputValid may only be set 
when sReg_PendingExecutionStale is clear (zero if it is realized as a counter). 

sReg_PredsDirty indicates whether a branch instruction or branch target must write an 
output predicate to the predicate forwarding bus before the active station may be retired.  
sReg_PredsDirty is always clear if an instruction is neither a branch, nor a branch target (branch 
targets have at least one valid input canceling predicate).  For branches, sReg_PredsDirty is set 
whenever the branch condition is reevaluated and the result is different than the last result 
written to the predicate forwarding bus, or the branch’s input predicate changes.  For branch 
targets, sReg_PredsDirty is set when the input predicate or canceling predicates of the instruction 
change and cause a change in its output predicate.  In either case, sReg_PredsDirty is cleared when 
the new predicate is forwarded on the predicate forwarding bus. 
 
3 Register Filter Unit 

 
The register filter unit is the component of the Levo machine which maintains copies of 

all the MIPS architectural registers and manages the flow of register values on the register 
forwarding busses. 

The register filter unit has four input register forwarding busses, four output register 
forwarding busses, and one input register backwarding bus.  The register filter unit must 
maintain a copy of each of the 32 MIPS architectural registers, along with a time tag 
corresponding to the value stored in each register.  Whenever new values for any register appear 
on one of the input register forwarding busses, the register filter unit must compare the time tag 
of the new value with that of the old, and store the new value if the time tag is newer.  Since it is 
possible for all four input busses to be active in a single cycle, the architectural register file must 
have at least 4 input ports.  Furthermore, it is also possible for any combination of busses to carry 
values for the same address.  In this case, time tags must be compared to verify which value, if 
any, should be snarfed.  Because of the number of comparators required for this, the register 
filter unit requires the most hardware of any HDLevo component. 

Three of the input register forwarding busses “pass through” the register filter unit.  That 
is to say, the register filter unit monitors these busses, but does not write to them.  These busses 
are designated as RFB 3, 2, and 1.  The fourth input register forwarding bus (RFB 0) terminates 
at the register filter unit.  This RFU is at the end of the RFB 0’s forwarding span.  The three 
“pass through” busses are re-indexed as 2, 1, and 0 when they leave the register filter unit, and a 
new register forwarding bus originates at the RFU, and is designated as the new RFB 3.  In this 
way, each register forwarding bus has a forwarding span of four sharing groups. 

The register filter unit writes values to its output RFB 3. Any value that is snarfed from 
input RFB 0 must be re-forwarded on output RFB 3 as soon as the bus becomes available.  Note 
that if a value arrives on RFB 3 but is not snarfed, either because the value is unchanged or its 
time tag is older than that of the previously stored value, it is NOT rebroadcast, reducing 
unnecessary bus traffic.  Additionally, any values requested on the register filter unit’s 
backwarding bus must be forwarded on RFB 0.  By performing these two functions, the register 
filter unit guarantees that every active station sees all the operand values that it requires to 
perform its computations.  A register filter unit prevents the column it is in from being retired 
until it has performed all pending forwarding operations. 
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There are actually two varieties of register filter unit in the Levo machine.  One variety is 
located at the top of each Levo column, at the head of the first sharing group in each column.  
These register filter units are special because they could be located at the boundary between the 
lowest and highest indexed columns in the Levo instruction window. (Recall that columns are 
renamed as instructions are retired in the window in a circular fashion, thus, each column spends 
some time as “column 0”).  These register filter units have the double duty of maintaining the 
oldest register values in the machine (those with time tag 0), while at the same time, collecting 
the “most speculative” register values (those with the highest time tags) at their inputs.  Thus, 
these register filter units must maintain two copies of all the MIPS architectural registers, one of 
which is only used when the register filter unit sits at the head of column 0. 

When one of these “split” RFUs is at index 0, it receives and stores values from its input 
RFBs and stores these values in one set of registers.  Backwarding requests are satisfied from a 
second set of registers.  Once column 0 is retired, the values from the first set of registers are 
copied into the second, and only the second set of registers is used (as per a normal RFU), until 
the column again becomes column 0.  This prevents values with high time tags from “wrapping 
around” the instruction window and reappearing at the lowest-indexed active station. 

 
4 HDLevo Test Harness 

 
Since not all of Levo has been implemented in the synthesizable VHDL model, a test 

harness is needed to simulate the function of parts of Levo that are still missing in the HDLevo 
model.  The test harness must play the part of the instruction fetch and load system, the memory 
system, the instruction window control logic, the processing elements, and predicate and 
memory filter units, in order to provide a simulation environment in which the register filter unit 
and active station models can be tested. 

The test harness creates a Levo testbed which wires the active stations and register filter 
units together into an 
execution window, and 
provides behavioral (non-
synthesizable) VHDL 
implementations of the 
surrounding hardware.  In 
addition, to facilitate testing, 
the test harness has a built-in 
MIPS assembler which 
assembles input programs and 
loads them through simulated 
instruction fetch hardware 
into the modeled active 
stations.  This built-in 
assembler greatly eases 
testing with HDLevo as MIPS 
programs can be fed directly into the simulation environment. 

The following sub-sections describe how various parts of the test harness are 
implemented. 

 

Figure 4 - HDLevo Test Harness Block Diagram for a Single Column
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4.1 Processing Elements 
Processing elements are simulated using behavioral VHDL.  The processing element is 

implemented as a VHDL process, which uses a large tree of if statements to match MIPS op 
codes to instruction types, decode the MIPS operation, and perform the operation using standard 
VHDL library components.  Currently, only a representative subset of all MIPS instructions is 
supported.  As HDLevo becomes capable of more sophisticated simulations, the full MIPS 
instruction set will be supported.  Only BEQ, ADD, and ADDI, and NOP instructions are 
currently supported.  The BEQ instruction is sufficient for HDLevo to verify predication 
functionality (all other direct branches are functionally equivalent to BEQ except for the branch 
condition calculation, which does not affect the logic in the active station).  ADD instructions are 
used to represent all 2 operand ALU operations, which again are functionally equivalent from the 
point of view of the active station.  The ADDI instruction represents 1 operand ALU instructions 
and is also used to calculate the target address of memory instructions.  Thus, these three 
instructions demonstrate the capability of HDLevo to carry out a very large subset of all MIPS 
R3000 instructions.  Floating point operations are currently omitted from the HDLevo processing 
element, however, the HDLevo active station model is capable of storing and forwarding 64 bit 
floating point operands and results. 

 
4.2 Levo Testbed 

The Levo testbed is the top-level component of the HDLevo test harness.  The testbed 
component instantiates two columns of active stations and register filter units, and wires them 
together.  The testbed is also responsible for invoking the assembler and loading the columns 
with instructions.  As each column reports that it has completed execution of all its instructions, 
the testbed renames the two columns and loads the now-empty column with a new set of 
instructions.  The testbed also generates global clock, reset, and other configuration signals. 

The testbed component also must perform the conversion from branches to predication, 
assigning predicates and canceling predicates as required.  Assigning predicates to branches is 
simple, since the predicate address is equal to the index of the active station into which the 
instruction is loaded.  However, the targets of these branches must be loaded with the correct 
canceling predicate addresses.  Several VHDL variables maintain arrays of branch targets and 
their corresponding predicates and these arrays are searched as instructions are loaded into active 
stations for branches targeting the instruction.   

The testbed must also process branch instructions which branch backwards or out of the 
instruction window, clearing the window and reloading it from the new starting address.  This 
functionality is omitted in the current version of the testbed and is planned for addition in the 
next version.  Thus, at this time, only forward branches with targets in the instruction window 
can be tested.  However, this is sufficient to verify that predication is working properly. 

It is planned to expand the testbed to simulate eight columns of active stations.  However, 
to increase the speed of simulation and the readability of results, only two columns are currently 
simulated. 

 
4.3 MIPS Assembler 

A lexical analyzer and finite state automata parser have been implemented using the 
VHDL textio facilities to create an assembler which can assemble directly from MIPS .asm files 
into the simulated memory of the HDLevo machine.  The assembler analyzes its input line by 
line, and breaks each line into a stream of tokens using the textio library.  These tokens are then 
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fed to the state machine, which parses MIPS assembly instructions and writes MIPS machine 
language into the simulated memory.  The assembler issues diagnostic messages any time it 
cannot determine how to traverse the parser’s state transition tree due to faulty input files.  The 
state machine itself is implemented as a large tree of “case” statements based on the present state 
and the next input token. The assembler currently supports the same subset of instructions that 
the simulated processing element supports, namely BEQ, ADD, ADDI, and NOP.  Even this 
simple set of instructions allows for the construction of fairly complex test cases, which ensure 
that the active station and register filter unit models are functioning properly. 

 
5 Synthesis Results 
 

Hardware sizes for the active station and register filter unit models were derived by 
running the VHDL input for these models through VHDL synthesis tools.  The models were 
optimized and translated into net lists using LeonardoSpectrum 1999j.  The net lists were than 
mapped for specific FPGAs using the Xilinx Alliance 3.1i tool chain.  Synthesis targeted a 
Xilinx VirtexE V1000efg1156 FPGA.  The Levo project is planning to implement a prototype of 
the Levo processor using the VirtexE 1000 FPGAs, hence, this FPGA was chosen as the 
synthesis target to generate size estimates. 

The Xilinx Alliance tool chain provides a metric at the end of the mapping process which 
measures the equivalent gate count for a design.  One “equivalent gate” is a 2 input NAND gate, 
or roughly 4 transistors [3].  The following table presents the equivalent gate and estimated 
transistor counts for the active station and both types of register filter units.  Also included are 
estimates for a memory filter unit, and predicate filter unit.  These estimates are based on scaling 
the numbers for the register filter unit by the relative complexity we estimate for the other filter 
units, and are not based on VHDL models. 

 
 
Component Model 

Equivalent Gates Estimated Transistors 

Active Station 21621 86484 
Register Filter Unit (standard) 60040 240160 
Register Filter Unit (column-head) 75207 300828 
Predicate Filter Unit (estimated) 5000 20000 
Memory Filter Unit (estimated) 37604 150414 

 
 
6 Conclusions 

 
The HDLevo project demonstrates the feasibility of realizing a full Levo prototype using 

FPGA’s, and the feasibility of implementing the Levo design in a custom ASIC using today’s 
state-of-the-art fabrication processes.  The key component of Levo, the active station, uses 
roughly 86000 transistors.  Eight active stations (one sharing group) fit easily on a single 
VertexE 1000 FPGA, each using roughly 8.5% of available logic cells, leaving sufficient space 
for routing and interconnection logic.  The register filter unit is currently anticipated to be the 
largest of the Levo components, and is 240000 (300000 for column-head) transistors.  A register 
filter unit uses roughly 20% of the available logic on a VertexE 1000.  It is the hope of the Levo 
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project to implement a prototype Levo processor using interconnected VertexE FPGA’s, a goal 
which appears realistic given the gate counts established here. 

For a full Levo processor, 512 active stations are required (256 each for the execution 
window, and DEE paths), for a total of 44 million transistors.  32 register filter units are required 
(1 per sharing group), 8 of which are the larger column head variety.  These require a total of just 
over 8 million transistors.  Thus, including the estimates for predicate and memory filter units, 
the bulk of the Levo processor fits in less than 59 million transistors.  The Intel Itanium 
Processor uses a total of 25 million transistors in the processor and 300 million in the cache [4].  
Based on this comparison, it seems clear the Levo could be realized on a single chip using 
current or very near future fabrication technology. 
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8 Appendices 
 
8.1 Active Station Component Design Reports 
 
The following sections of this appendix are component design reports for various sub-
components of the active station.  They are a detailed reference useful as a guide for examining 
and understanding the VHDL source of the active station. 
 
8.1.1 Register Forwarding Bus Interface 
 
Purpose: 
 
The Register Forwarding Bus Interface is the component of Levo which reads from and writes to 
the register forwarding bus system.  The RFBI monitors all four of the RFBs to which an active 
station is connected for bus transactions whose address matches any of the active station’s 
operand or relay addresses.  The RFBI compares the time tag of these transactions to those of the 
previously stored values, and sends a signal to the Active Station Control Unit when a “snarf” 
occurs. 
When writing, the RFBI signals the bus arbitration unit that it would like to write to its output 
register forwarding bus.  When the RFBI is granted the bus, it writes the output or relay value to 
be forwarded to the bus and signals the Active Station Control Unit to indicate that the 
forwarding operation is complete. 
 
Entity: eRegisterForwardingBusInterface       
  entities/register_forwarding_bus_interface_entity.vhd 
Architectures: implementation          
  architectures/register_forwarding_bus_interface _architecture.vhd 
 debug_imlementation  
  debug_architectures/ register_forwarding_bus_interface _architecture.vhd 
 
Component Interactions: 
 
Strobe and Reset signals for all registers come from the AS Control Unit. 
Current values, addresses, and time tags for operands, relay, and output values come from the 
Active Station Register File. 
New operand and relay values and time tags go to the Active Station Register File. 
Control signals indicating that a snarf of an operand/relay has occurred go to the AS Control 
Unit. 
Control signals indicating that a the output or relay value should be forwarded come from the AS 
Control Unit. 
 
Ports: 
Asc2Rfb_En_OperandSnarf (in) Enables or disables snarfing of each operand.
Asc2Rfb_En_RelaySnarf (in) Enables or disables snarfing of the relay.
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Asc2Rfb_En_FloatSnarf (in) Set when floating point values should be snarfed.  When 
floating point snarf is enabled, the LSB of operand and relay 
addresses is masked for purposes of matching addresses, and 
is instead used to distinguish high doubleword from low 
doubleword of a floating point value.

Asc2Rfb_Req_Forwarding (in) Control signal which indicates that the RFBI should 
forward a value on the register forwarding bus.

Asc2Rfb_Sel_ForwardingSignal (in) Indicates whether output or relay should be forwarded.
Asc2Rfb_Sel_ForwardingFloat (in) When set, indicates that the low byte of a floating point 

output/relay value should be written to the bus.
Out2Rfb_BusGrant_RFB (in) Indicates that write access has been granted for the 

register forwarding bus.
Out2All_ColumnShift (in) Indicates that a column is being retired this cycle and that 

all time tags must be shifted.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OperandData (in) Current operand values
Rf2All_FloatOperandData (in) Current floating point low doubleword operand values
Rf2All_OperandAddress (in) Current operand addresses
Rf2All_OperandTimeTag (in) Current operand time tags
Rf2All_OutputData (in) Current output value
Rf2All_FloatOutputData (in) Current floating point low doubleword output value
Rf2All_OutputAddress (in) Current output/relay address
Rf2All_OutputTimeTag (in) Current output time tag
Rf2All_RelayData (in) Current relay value
Rf2All_FloatRelayData (in) Current floating point low doubleword relay value
Rf2All_RelayTimeTag (in) Current relay time tag
Rfb2Asc_Ack_Forwarding (out) Acknowledges to the ASC that a forwarding operation 

has been completed.
Rfb2Out_BusReq_RFB (out) Requests write access to the register forwarding bus.
Rfb2Asc_OperandSnarf (out) Signal to ASC indicating that an operand value has been 

snarfed.
Rfb2Asc_RelaySnarf (out) Signal to ASC indicating that the relay value has been 

snarfed.
Rfb2Asc_FloatOperandSnarf (out) Signal to ASC indicating that low byte of a floating 

point operand value has been snarfed.
Rfb2Asc_FloatRelaySnarf (out) Signal to ASC indicating that low byte of the floating 

point relay value has been snarfed.
Rfb2Asc_OperandFreshen (out) Indicates that an operand value has been freshened.  

Freshening means that a newer time tag, but an unchanged 
value has been snarfed.

Rfb2Asc_RelayFreshen (out) Indicates that an operand value has been freshened.
Rfb2Rf_NewOperandData (out) New operand values. 
Rfb2Rf_NewOperandTimeTag (out) New operand time tags.
Rfb2Rf_NewRelayData (out) New relay value.
Rfb2Rf_NewRelayTimeTag (out) New relay time tag.
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RegisterForwardingBus (inout) Read/Write RFB. 
PassthruRegisterForwardingBusses (inout) Read-only RFBs

 
Internal Logic: 
 
Diagram not available 
 
VHDL Implementation Issues: 
 
Note that it is assumed in HDLevo that there is not enough time in a single cycle for forwarded 
signals to propagate across a bus, and then be processed at the end of the bus.  Thus, values off 
of all four register forwarding busses are registered in the RFBI each cycle, and then compared to 
values stored in the ASRF in the following cycle.  The only processing done in the cycle in which 
bus transactions are received is the shifting of time tags if a column shift is signaled during the 
transaction cycle. 
 
Once registered, the addresses and time tags from each of the busses are compared against the 
operand and relay addresses and time tags.  These comparators are instantiated in the 
GenAddressMatch generate block in the RFBI architecture.  The first nine lines within the generate 
block instantiate comparators for address comparison.  The address comparators are broken up 
over several signals in order to efficiently match addresses for floating point operations.  In 
floating point operations, 64 bit floating point values are stored in two consecutive architectural 
registers, where the register with address ending in a ‘0’ is the most significant doubleword, and 
the address ending with ‘1’ the least significant. 
 
The next several lines evaluate the time tags of each bus signal.  First, sTimeTagInPast ensures that 
the bus transaction comes from an active station above this active station in the execution 
window.  This prevents an active station from snarfing updates from other active stations in their 
sharing group which have higher time tags.  The next several comparisons evaluate if the stored 
value for each operand/relay is more recent than that on the bus.  The final set of comparators 
compare the data value from the bus transaction to that of the stored value.  If the data values 
match, a freshen, instead of a snarf operation is performed.  In a freshen operation, time tag 
values are updated, but instructions are not re-executed nor are new results forwarded on any 
bus. 
 
Another problem that must be solved in the RFBI is that the same address may appear on 
multiple register forwarding busses in the same cycle.  A set of comparators compare the time 
tags across each combination of busses.  When the same address appears on multiple busses, the 
output of these comparators is used to determine which value to snarf. 
 
Finally, freshen and snarf output signals are generated based on the results of all the 
comparators.  These signals also determine which bus value should be copied to the 
Rfb2Rf_NewOperandData and other output signals to the ASRF. 
 
 



 24

8.1.2 Register Backwarding Bus Interface 
 
Purpose: 
 
The Register Backwarding Bus Interface is used by Levo to request operand and relay values 
from the Register Filter Unit nearest the active station.  These requests are necessary to ensure 
that the RFU forwards the required value on the register forwarding bus.  The RFU will ignore 
requests for values which have already been forwarded, or which have been requested by other 
active stations. 
 
Entity: eRegisterBackwardingBusInterface       
  entities/register_backwarding_bus_interface_entity.vhd 
Architectures: implementation          
  architectures/register_backwarding_bus_interface _architecture.vhd 
 debug_imlementation  
  debug_architectures/register_backwarding_bus_interface _architecture.vhd 
 
Component Interactions: 
 
Current addresses for operands, relay, and output values come from the Active Station Register 
File. 
Control signals indicating that an operand or relay should be requested come from the AS 
Control Unit. 
Control signals indicating that a request has been made go to the AS Control Unit. 
 
Ports: 

Asc2Rbb_Req_Operand (in) Signal from ASC indicating that a particular operand 
should be requested.

Asc2Rbb_Req_Relay (in) Signal from ASC indicating that the relay should be 
requested.

Asc2Rbb_Req_FloatOperand (in) Signal from ASC indicating that a the least significant 
doubleword of a floating point operand should be requested.

Asc2Rbb_Req_FloatRelay (in) Signal from ASC indicating that a the least significant 
doubleword of the floating point relay should be requested.

Rbb2Asc_Ack_OperandReq (out) Signal to the ASC acknowledging a request for an 
operand.

Rbb2Asc_Ack_RelayReq (out) Signal to the ASC acknowledging a request for the 
relay.

Rbb2Asc_Ack_FloatOperandReq (out) Signal to the ASC acknowledging a request for the least 
significant doubleword of a floating point operand.

Rbb2Asc_Ack_FloatRelayReq (out) Signal to the ASC acknowledging a request for the least 
significant doubleword of the floating point relay.

Rbb2Out_BusReq_RBB (out) Requests write access to the register backwarding bus.
Out2Rbb_BusGrant_RBB (in) Indicates that write access has been granted for the 

register backwarding bus.
Out2All_SystemClock (in) System clock
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Out2All_SystemReset (in) System reset
Rf2All_OperandAddress (in) Current operand addresses
Rf2All_OutputAddress (in) Current output/relay address
RegisterBackwardingBus (out) Register backwarding bus. 

 
Internal Logic: 
 
Diagram not available 
 
VHDL Implementation Issues: 
 
No particular implementation issues. 
 
8.1.3 Memory Forwarding Bus Interface 
 
Purpose: 
 
The Memory Forwarding Bus Interface is used by Levo to forward the outputs of store 
instructions and monitor for the inputs of load instructions.  There are four memory forwarding 
busses in Levo, each of which are interleaved to carry different memory addresses.  One memory 
bus carries transactions for addresses whose least significant bits are “00”, the next for “01” and 
so on.  The MFBI performs update and nullify transactions for store instructions.  An update 
transaction forwards a memory address, new value, and time tag on the bus, and indicates a write 
to that memory address.  A nullify transaction forwards and address and time tag, and indicates 
that a previous write to that address should be rolled back.  For load instructions, the MFBI 
functions in a similar fashion to the RFBI, snarfing updates to its memory address.  However, 
since loads always load from a single address, only one memory forwarding bus need be 
monitored at a time, saving a considerable amount of hardware relative to the RFBI. 
 
Entity: eMemoryForwardingBusInterface       
  entities/memory_forwarding_bus_interface_entity.vhd 
Architectures: implementation          
  architectures/memory_forwarding_bus_interface _architecture.vhd 
 debug_imlementation  
  debug_architectures/memory_forwarding_bus_interface _architecture.vhd 
 
Component Interactions: 
 
Current memory addresses value, and time tags come from the Active Station Register File. 
Control signals indicating that the MFBI should snarf or perform and update or nullify 
transaction come from the AS Control Unit. 
Control signals indicating that a snarf or transaction has occurred go to the AS Control Unit. 
 
Ports: 
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Asc2Mfb_En_MemorySnarf (in) Signal from ASC indicating the MFBI should monitor the 
appropriate forwarding bus to snarf memory updates.

Asc2Mfb_Req_Store (in) Signal from ASC indicating a transaction should be 
performed.

Asc2Mfb_StoreNotNullify (in) Signal from ASC indicating whether an update or nullify 
transaction should be performed.

Mfb2Asc_Ack_Request (out) Signal to ASC indicating the requested transaction has 
been completed.

Mfb2Out_BusReq_MFB (out) Requests write access to the memory forwarding bus. 
Out2Mfb_BusGrant_MFB (in) Indicates that write access has been granted for the 

memory forwarding bus.
Mfb2Asc_LoadSnarf (out) Signal to the ASC indicating that an update transaction 

has been snarfed.
Mfb2Asc_NullifySnarf (out) Signal to the ASC indicating that a nullify transaction 

has been snarfed.
Out2All_ColumnShift (in) Indicates that all time tags must be shifted due to a 

column being retired. 
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OutputTimeTag (in) Time tag used when writing nullify and update 

transactions
Rf2All_MemoryData (in) Value currently stored for memory data
Rf2All_MemoryAddress (in) Value currently stored for memory address
Rf2All_MemoryTimeTag (in) Value stored for the last snarfed memory time tag.

Internal Logic: 
 
Diagram not available 
 
VHDL Implementation Issues: 
 
As with the RFBI, the assumption is made in the MFBI that bus transactions cannot be received 
and compared in the same cycle.  Thus, all bus transactions are registered in the cycle they occur, 
and then evaluated in the following cycle. 
 
Note that the MFBI always deals with only one memory address at a time, thus, only one set of 
comparators is needed.  The least significant bits of the memory address select which of the 
memory forwarding busses should be read from / written to. 

 
8.1.4 Memory Backwarding Bus Interface 
 
Purpose: 
 
The Memory Backwarding Bus Interface is used by load instructions to request that values be 
retrieved from the memory hierarchy.  Memory backwarding requests are sent to the nearest 
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memory filter unit.  The memory filter unit may then satisfy the request from a local buffer, from 
the write queue, or from memory. 
 
Entity: eMemoryBackwardingBusInterface       
  entities/memory_backwarding_bus_interface_entity.vhd 
Architectures: implementation          
  architectures/memory_backwarding_bus_interface _architecture.vhd 
 debug_imlementation  
  debug_architectures/memory_backwarding_bus_interface _architecture.vhd 
 
Component Interactions: 
 
The memory address to be requested comes from the Active Station Register File. 
Control signals indicating that a request should be made comes from the AS Control Unit. 
Control signals indicating that a request has been made go to the AS Control Unit. 
 
Ports: 
Asc2Mbb_Request_Load (in) Signal from ASC indicating that the MBBI should issue a 

memory request.
Out2Mbb_BusGrant_MBB (in) Indicates that write access has been granted for the 

memory backwarding bus.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_MemoryAddress (in) Memory address to be requested
Mbb2Asc_Ack_LoadReq (out) Signal to ASC acknowledging that a memory request 

has been made.
Mbb2Out_BusReq_MBB (out) Requests write access to the memory backwarding bus. 
MemoryBackwardingBusses (inout) Bus for requesting memory addresses.

Internal Logic: 
 
Diagram not available 
 
VHDL Implementation Issues: 
 
As with the memory forwarding bus, the memory backwarding busses are interleaved, each 
carrying addresses with different values in the least two significant bits. 

 
8.1.5 Predicate Forwarding Bus Interface 
 
Purpose: 
 
The Predicate Forwarding Bus Interface is used to send output predicates and canceling 
predicates from branch and branch target instructions.  The PFBI also snarfs input predicate and 
input canceling predicate forwarding transactions for all instructions. 
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Entity: ePredicateForwardingBusInterface       
  entities/predicate_forwarding_bus_interface_entity.vhd 
Architectures: implementation          
  architectures/predicate_forwarding_bus_interface _architecture.vhd 
 debug_imlementation  
  debug_architectures/predicate_forwarding_bus_interface _architecture.vhd 
 
Component Interactions: 
 
The addresses and current values for input predicates and canceling predicate come from the 
Active Station Register File. 
Newly snafed input predicate values go to the Active Station Register File. 
Output predicate and canceling predicate values come from the AS Control Unit. 
Control signals indicating that predicate should be forwarded and that snarfing should be enabled 
come from the AS Control Unit. 
Control signals indicating that predicates have been snarfed go to the AS Control Unit. 
 
Ports: 

Asc2Pfb_En_pSnarf (in) Signal from ASC enabling snarfing of the input predicate.
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Asc2Pfb_En_cpSnarf (in) Signal from the ASC enabling snarfing for each of the 

canceling predicates
Asc2Pfb_Req_Forwarding (in) Signal from the ASC requesting that the output predicate 

and canceling predicate be forwarded.
Pfb2Asc_Ack_Forwarding (out) Signal to the ASC acknowledging a forwarding 

operation. 
Pfb2Out_BusReq_PFB (out) Requests write access to the predicate forwarding bus. 
Out2Pfb_BusGrant_PFB (in) Grant of write access to the predicate forwarding bus. 
Out2All_ColumnShift (in) Signal indicating all predicate addresses should be 

shifted due to a column retiring. 
 
Pfb2Asc_pSnarf (out) Signal to the ASC indicating the input predicate has 

been snarfed. 
Pfb2Asc_cpSnarf (out) Signal to the ASC indicating the input canceling 

predicate has been snarfed. 
Rf2All_PredValue (in) Current input predicate value. 
Rf2All_PredAddress (in) Current input predicate address. 
Rf2All_cPredValue (in) Current input canceling predicate value. 
Rf2All_cPredAddress (in) Current input canceling predicate address. 
Pfb2Rf_NewpValue (out) Snarfed input predicate value. 
Pfb2Rf_NewcpValue (out) Snarfed input canceling predicate value. 
Rf2All_ASID (in) Active station index (used to calculate output predicate 

and canceling predicate address). 
Asc2Pfb_poutValue (out) Output predicate value. 
Asc2Pfb_cpoutValue (out) Output canceling predicate value. 
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PredicateForwardingBus (inout) The predicate forwarding bus.

Internal Logic: 
 
Diagram not available 
 
VHDL Implementation Issues: 
 
No special VHDL considerations. 
  
 
 
8.1.6 Processing Element Return Bus Interface 
 
Purpose: 
 
The Processing Element Return Bus Interface monitors the Processing Element Return Bus for 
execution results sent back from the Processing Element to this Active Station.  It compares the 
address on the PERB to the address of this Active Station, and signals the Active Station Control 
Unit if there is a match. 
 
Entity: ePEReturnBusInterface  
  entities/pe_return_bus_interface_entity.vhd 
Architectures: implementation  
  architectures/pe_return_bus_interface_architecture.vhd 
 debug_imlementation 
  debug_architectures/pe_return_bus_interface_architecture.vhd 
 
Component Interactions: 
 
Execution results are sent from the Processing Element. 
Execution results are sent to the AS Register File.  The AS Address comes from the ASRF 
A signal is sent to the AS Control Unit when an execution result is snarfed. 
 
Ports: 
 
Rf2All_ASID  (in) Address of the Active Station containing this PEBI 
PERBus  (tri-out) The Processing Element Return Bus 
Perb2Rf_OutputData (out) Execution Result sent to ASRF 
Perb2Asc_Executed (out) Signal to ASC to indicate an execution result has been 

received 
 
Internal Logic: 
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PERB

Perb2Rf_OutputData

?=

PERB.bResult

PERB.bASAddress
Asrf2All_ASIDPerb2Asc_Executed

 
 
VHDL Implementation Issues: 
 
No special VHDL considerations. 
 
8.1.7 Processing Element Bus Interface 
 
Purpose: 
 
The Processing Element Bus Interface is signaled by the AS Control Unit when an instruction 
should be dispatched to the Processing Element for execution.  It competes for the Processing 
Element Bus and then dispatches the instruction and operands to the PE. 
 
Entity: ePEBusInterface entities/pe_bus_interface_entity.vhd 
Architectures: implementation architectures/pe _bus_interface_architecture.vhd 
 debug_imlementation debug_architectures/pe 
_bus_interface_architecture.vhd 
 
Component Interactions: 
 
Instructions and operands are dispatched to the Processing Element. 
Operands and opcodes for instructions come from the AS Register File. 
Control signals come from the AS Control Unit 
Clock and Reset signals are global. 
 
Ports: 
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Out2All_SystemClock (in) Clock 
Out2All_SystemReset (in) Reset (clears the PEBGranted flip flop) 
Rf2All_OperandData (in) Operand values from the AS Register File 
Rf2All_PEOp  (in) Processing Element op code 
Rf2All_ASID  (in) Address of the Active Station containing this PEBI 
PEBus  (tri-out) The Processing Element Bus 
Asc2Peb_Req_Execution (in) Signal from ASC to dispatch the instruction 
Peb2Asc_Ack_ExecutionReq (out) Acknowledgement to ASC to indicate excution has 
  been requested 
Peb2Out_BusReq_PEB (out) Bus request signal to PEB arbitration 
Out2Peb_BusGrant_PEB (in) Bus grant signal from PEB arbitration 
 
Internal Logic: 
 

P E B

R f 2 A l l _ A S I D

R f 2 A l l _ P E O p

R f 2 A l l _ O p e r a n d D a t a

O u t 2 P e b _ B u s G r a n t _ P E B P e b 2 A s c _ A c k _ E x e c u t i o n R e q

P e b 2 O u t _ B u s R e q _ P E BA s c 2 P e b _ R e q _ E x e c u t i o n

 
 
VHDL Implementation Issues: 
 
sReg_PEBGranted and sPEBGranted together synthesize a flip flop used to store Bus Grant signals 
from the cycle in which the bus is granted, to the cycle in which the bus signals are enabled.  All 
connections to the PEB.are tri-stated, using sReg_PEBGranted as the enable. 
 
8.1.8 Active Station Register File 
 
Purpose: 
 
The Active Station Register File contains all state information stored in the active station, except 
control state stored in the Active Station Control Unit.  The ASRF contains registers for operand, 
relay, and output data addresses, and time tags, op codes, active station address, predicates and 
canceling predicates and their addresses. 
 
Entity: eASRegisterFile  entities/as_register_file_entity.vhd 
Architectures: implementation  architectures/as_register_file_architecture.vhd 
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 debug_imlementation  debug_architectures/as_register_file 
_architecture.vhd 
 
Component Interactions: 
 
Strobe and Reset signals for all registers come from the  AS Control Unit. 
Opcodes, operand addresses, output address, predicates and their addresses come from the Load 
Bus Interface. 
New operand and relay values and time tags come from the Register Forwarding Bus Interface. 
New output values come from the Processing Element Return Bus Interface. 
New input predicate values come from the Predicate Forwarding Bus Interface. 
New output predicate values come from the AS Control Unit. 
Values contained in the ASRF are made available to all other components. 
 
Ports: 
 
Asc2Rf_Strobe_Rfb2Rf_OperandData (in) Strobe signal for operand data coming from RFBI.
Asc2Rf_Strobe_Lb2Rf_OperandAddress (in) Strobe signal for operand address coming from RFBI.
Asc2Rf_Strobe_Rfb2Rf_OperandTimeTag (in) Strobe signal for operand time tag coming from RFBI.
Asc2Rf_Strobe_Perb2Rf_OutputData (in) Strobe signal for output data coming from PERB.
Asc2Rf_Strobe_Lb2Rf_OutputAddress (in) Strobe signal for output address coming from LBI.
Asc2Rf_Strobe_OutputTimeTag (in) Strobe signal to generate output time tag.
Asc2Rf_Strobe_Rfb2Rf_RelayData (in) Strobe signal for relay data coming from RFBI.
Asc2Rf_Strobe_RelayTimeTag (in) Strobe signal for relay time tag coming from RFBI.
Asc2Rf_Strobe_Lb2Rf_PEOpCode (in) Strobe signal for PE op code coming from LBI.
Asc2Rf_Strobe_Lb2Rf_ASOp (in) Strobe signal for AS op code coming from LBI.
Asc2Rf_Strobe_Lb2Rf_PredAddress (in) Strobe signal for predicate addresses coming from LBI.
Asc2Rf_Strobe_Lb2Rf_PredValue (in) Strobe signal for predicate values coming from LBI.
Asc2Rf_Strobe_Lb2Rf_cPredAddress (in) Strobe signal for canceling predicate addresses coming 

from LBI.
Asc2Rf_Strobe_Lb2Rf_cPredValue (in) Strobe signal for canceling predicate values coming from 

LBI.
Asc2Rf_Strobe_Lb2Rf_cPredValid (in) Strobe signal for canceling predicate valid bits coming 

from LBI.
Asc2Rf_Strobe_Pfb2Rf_NewpValue (in) Strobe signal for predicate values coming from PFBI.
Asc2Rf_Strobe_Pfb2Rf_NewcpValue (in) Strobe signal for canceling predicate values coming from 

PFBI.
Asc2Rf_Rst_OperandTimeTag (in) Reset signal to clear operand time tags when a new 

instruction is loaded.
Asc2Rf_Rst_RelayTimeTag (in) Reset signal to clear relay time tags when a new 

instruction is loaded.
Rfb2Rf_NewOperandData (in) New operand value from RFBI.
Rfb2Rf_NewOperandTimeTag (in) New operand time tag from RFBI.
Rfb2Rf_NewRelayData (in) New relay value from RFBI.
Rfb2Rf_NewRelayTimeTag (in) New relay time tag from RFBI.
Lb2Rf_OperandAddress (in) New operand address from LBI
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Perb2Rf_OutputData (in) New output value from PERBI
Lb2Rf_OutputAddress (in) New output address from LBI
Lb2Rf_PEOpCode (in) New PE op code from LBI
Lb2Rf_ASOp (in) New AS op code (pre-decoded from PE op) from LBI
Out2Rf_ASID (in) Address of this AS within Levo.
Lb2Rf_PredAddress (in) New predicate address from LBI
Lb2Rf_PredValue (in) Initial input predicate value from LBI
Lb2Rf_cPredAddress (in) New canceling predicate address from LBI
Lb2Rf_cPredValue (in) Initial canceling predicate value from LBI
Lb2Rf_cPredValid (in) Valid bit for each canceling predicate from LBI
Pfb2Rf_NewpValue (in) New input predicate value from PFBI
Pfb2Rf_NewcpValue (in) New canceling predicate value from PFBI
Out2All_SystemClock (in) System clock
Out2All_SystemReset (in) System reset
Rf2All_OperandData (out) Current operand values
Rf2All_OperandAddress (out) Current operand addresses
Rf2All_OperandTimeTag (out) Current operand time tags
Rf2All_OutputData (out) Current output value
Rf2All_OutputAddress (out) Current output/relay address
Rf2All_OutputTimeTag (out) Current output time tag
Rf2All_RelayData (out) Current relay value
Rf2All_RelayTimeTag (out) Current relay time tag
Rf2All_PEOp (out) Current PE op code 
Rf2Asc_ASOp (out) Current AS op code
Rf2Asc_BranchTaken (out) indicates if the last branched executed was taken (1) or 

not taken (0).  This is actually another name for bit 0 of 
Rf2All_OutputData

Rf2Asc_p (out) Latched version of Rf2All_PredValue.  This output 
follows input values that will change Rf2All_PredValue after 
the next clock edge

Rf2Asc_cp (out) Latched version of Rf2All_cPredValue.  This output 
follows input values that will change Rf2All_PredValue after 
the next clock edge

Rf2All_ASID (out) Current address of this AS in Levo
Rf2All_PredAddress (out) Current input predicate address
Rf2All_PredValue (out) Current input predicate value
Rf2All_cPredAddress (out) Current input canceling predicate addresses
Rf2All_cPredValue (out) Current input canceling predicate values
Rf2All_cPredValid (out) Current input canceling predicate valid flags
 
 
Internal Logic: 
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Rfb2Rf_NewOperandData EN

RST

Rf2All_OperandData

Asc2Rf_Strobe_Rfb2Rf_NewOperandData

Out2All_SystemReset

 
 
Note: diagram illustrates a sample register.  All other registers are realized in a similar fashion.  
See implementation notes. 
 
VHDL Implementation Issues: 
 
All of the output signals from the ASRF should be generated as the Q signals from registers, 
except the Rf2Asc_* signals, which must be implemented as latches.  The output signals of 
Rf2Asc_* signals must follow the inputs when any of the strobe signals are asserted, to assure 
proper behavior of the ASC. 
 
When a register is attached to multiple input signals, the inputs are connected by a mux, whose 
output is selected based on the strobes, and the strobe signals are OR’d together.  The muxes 
should give priority to signals coming from the LBI.  After the LBI signals, priority is arbitrary, 
and it is the responsibility of the ASC to assure that only one strobe is active at a time. 
 
Reset signals are synchronous, and take priority of strobe signals.  Reset is to all ‘0’s except for 
predicate value, which resets to ‘1’. 
 
The ASRF generates the output time tag of the AS by taking the top 5 bits of the ASID, and then 
appending to it a special one-hot encoding of the bottom 3 bits.  In this encoding “000” maps to 
“00000000”; “001” maps to “00000001”; “010” maps to “00000011”; and so on, up to “111” 
mapping to “11111111”. 
 
8.2 Output from the Xilinx Alliance Synthesis Tools 
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8.2.1 Active Station 
 
Excepted from the Xilinx Alliance map report for the Active Station 
 
Number of Slices: 1,110 out of 12,288 9%

Number of Slices containing
unrelated logic: 0 out of 1,110 0%

Total Number Slice Registers: 735 out of 24,576 2%
Number used as Flip Flops: 725
Number used as Latches: 10

Total Number 4 input LUTs: 1,950 out of 24,576 7%
Number used as LUTs: 1,941
Number used as a route-thru: 9

Number of bonded IOBs: 1,031 out of 660 156%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 21,621
 
8.2.2 Register Filter Unit (Column Head) 
 
Excepted from the Xilinx Alliance map report for the Column-Head Register Filter Unit 
 
Design Summary:

Number of errors: 0
Number of warnings: 36
Number of Slices: 4,615 out of 12,288 37%
Number of Slices containing

unrelated logic: 0 out of 4,615 0%
Total Number Slice Registers: 3,189 out of 24,576 12%

Number used as Flip Flops: 3,139
Number used as Latches: 50

Total Number 4 input LUTs: 7,880 out of 24,576 32%
Number used as LUTs: 7,843
Number used as a route-thru: 37

Number of bonded IOBs: 301 out of 660 45%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 75,207
 
8.2.2 Register Filter Unit (standard) 
 
Excepted from the Xilinx Alliance map report for the standard Register Filter Unit 
 
Design Summary:

Number of errors: 0
Number of warnings: 4
Number of Slices: 3,818 out of 12,288 31%
Number of Slices containing

unrelated logic: 0 out of 3,818 0%
Total Number Slice Registers: 1,733 out of 24,576 7%

Number used as Flip Flops: 1,682
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Number used as Latches: 51
Total Number 4 input LUTs: 7,314 out of 24,576 29%

Number used as LUTs: 7,308
Number used as a route-thru: 6

Number of bonded IOBs: 296 out of 660 44%
Number of GCLKs: 1 out of 4 25%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design: 60,040
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