
0018-9162/97/$10.00 © 1997 IEEE May 1997 71

Branch Effect
Reduction Techniques

T here is an insatiable demand for computers of
ever-increasing performance. Old applications
are applied to more complex data and new appli-

cations demand improved capabilities. Developers
must exploit parallelism for all types of programs to
realize gains. Multiprocessor, multithreaded, vector,
and dataflow computers achieve speedups up to the
1,000’s for programs with large amounts of data par-
allelism or independent control flow. For general-pur-
pose code, however—which comprises most executed
code—parallel execution has been only two or three
times faster than sequential.

General-purpose code has many conditional
branches, irregular control flow, and much less data
parallelism. These code characteristics and their
detrimental consequences, in the form of branch
effects, have severely limited the parallelism that can
be exploited. Branch effects result from the uncer-
tainties in the way branches execute.

In this article, we survey techniques to reduce
branch effects and describe their relative merits,
including examples from commercial machines. We
believe this survey is timely because research is bear-
ing much fruit: Speedups of 10 or more are being
demonstrated in research simulations and may be
realized in hardware within a few years. The hard-
ware required for large-scale exploitation is great,
but the density of transistors per chip is increasing
exponentially, with estimates of 50 to 100 million
transistors per chip by 2000.

PERFORMANCE FACTORS
Architectural enhancements alone account for

half the increase in processor performance over the
years—a percentage that is expected to stay the
same, if not grow. However, within the past five
years, single-instruction-issue pipelined processors
have topped out their performance, executing
slightly less than one instruction per cycle. If design-
ers are to continue increasing processor perfor-
mance, they must turn to methods that exploit
instruction-level parallelism within each program.

Superscalar processors like the Intel Pentium and
Motorola 68060 have been doing exactly this.
However, performance has stalled at speedups of
two to three instructions per cycle, on average. This
stagnation is due to branch effects.

Branch effects
To illustrate how branch effects can block the

exploitation of instruction-level parallelism, con-
sider the typical program, which has two kinds of
instructions: assignments (A=B+C) and branches.
Branches are used to realize high-level control flow
statements such as

if (a<=b) {....}

or
for (i=1; i<=10; i++) {....}

In many cases, nominally sequential instructions,
such as A=B+C and D=E+F, are independent and
thus may be executed in parallel. The performance
improvement or speedup due to this parallelism is
the time to execute a program sequentially divided
by the time to execute the program in parallel. In a
program composed of the two instructions just
given, the speedup is 2 (2/1).

Branches give rise to control dependencies, a type
of branch effect. Classically, if some condition is
true, control transfers to the instruction at the
branch’s target address. The branch is then “taken,”
and its sign becomes T or 1. If the condition is false,
execution continues with the instruction immedi-
ately after the branch, in which case the sign is N
(“not taken”) or 0. The computer cannot execute
the code after a branch until it executes the branch
and updates the program counter. With this restric-
tion, parallelism can be exploited only from the
instructions occurring up to the next branch.
Because a branch path (code between executed
branches) is typically three to nine instructions, and
because data dependencies also restrict parallelism,
the speedup is only about 1.6.1,2 The sidebar “How

Branch effects are the biggest obstacle to gaining significant speedups
when running general-purpose code on instruction-level parallel machines.
This survey compares current branch effect reduction techniques, offering
hope for greater gains.

Augustus K.
Uht
University of
Rhode Island

Vijay Sindagi
Texas
Instruments

Sajee
Somanathan
ADE Corp.

R
e

se
a

rc
h

 F
e

a
tu

re

.

72 Computer

Dependencies Limit Instruction-Level Parallelism”
describes both data and control dependencies.

On the face of it, then, designers are stuck—they
cannot create processors that execute more than one
or two machine instructions per cycle. However, if
branch effects could be completely eliminated, per-
formance could improve 25 to 158 times over that
with sequential execution.1,3

Branch effect reduction
Branch effect reduction techniques, or BERTs,

attempt to free instruction-level parallelism using the
mechanisms listed in Table 1. The table lists the tech-
niques we describe here.

As the table shows, a technique can use more than
one mechanism. Most work has gone into specula-
tive execution techniques, and they are consequently
more common in commercial machines.

Speculative execution. This mechanism condition-
ally executes code after a branch, even if the code is
dependent on the branch. Hence, execution is spec-
ulative because code is executed before the proces-
sor knows it should be executed.

Branch predictors, which attempt to predict the
branch sign, are key to most forms of speculative exe-
cution. The path predicted to be followed is the pre-
dicted path; the path predicted not to be followed is
the not-predicted path. The predicted path can be of
either branch sign (not-taken or taken). A technique
commonly predicts the branch path after the code
being executed enters the processor’s execution win-

dow but before the branch has resolved (before the
sign is actually known).

Most speculative execution methods are single-path
because they execute down one path from a branch.
When the processor encounters a branch, the tech-
nique predicts the branch sign, and execution proceeds
down the predicted path. However, because the
branch is unresolved, the processor performs all writes
to registers or memory and all I/O operations condi-
tionally, finalizing them only when it is certain that all
previously speculated branches have been predicted
correctly. If there is a misprediction before a condi-
tional operation, that operation is discarded. Hence,
the greater the distance between mispredictions, the
more parallelism can be extracted.

The accuracy of a technique’s prediction is expressed
as its branch prediction accuracy, the average fraction of
correct predictions. The amount of instruction-level par-
allelism a reduction technique can realize is extremely
sensitive to its branch prediction accuracy. For exam-
ple, improving branch prediction accuracy from just 85
percent to 90 percent increases the distance between mis-
predictions by 50 percent, as given by

distance ∝ 1/(1 − accuracy)

Another important concept is the branch target
buffer—a form of cache commonly used to handle
branches through hardware. Typically, before a proces-
sor can execute a branch as taken, it must compute the
branch’s target address. This computation slows down

How Dependencies Limit
Instruction-Level Parallelism

Two instructions must be executed sequentially if there are
dependencies between them. A resource dependency arises if there
are insufficient resources, such as adders, to execute all possible
pending instructions simultaneously. Semantic dependencies
require instructions to execute sequentially to ensure correct pro-
gram results. Within this class are data and control (or procedural)
dependencies. Both consist of a set of classical dependency types
that restrict the available instruction-level parallelism. By deter-
mining a minimal set of these dependencies—a set that contains
only true dependencies—more parallelism can be made available.

Table A shows classical data dependencies. In each case, the
common use of memory or register variable A in instructions 1

and 2 creates the corresponding type of dependency. The set of
minimal data dependencies is composed of flow or true data
dependencies only. The other two types of data dependencies
can be eliminated with renaming. In renaming, multiple copies
of instruction sinks, such as A, are created. We assume that
renaming is used throughout this article.

Recent research is exploring the possibility of reducing the
effects of even true data dependencies using data prediction and
speculation. Results are still inconclusive, however.

Classically, all instructions after a branch must wait for the
branch to execute before they can execute. In the following
example, instructions 2 through 7 are control dependent on
instruction 1, a branch.

1: if (a == b) { // [i n br a nch f o rma t :
2: z = y + x; } // if (a != b) goto 3;]
3: d = e ** f;

4: g = d –– h;

5: if (x == y) { // [or :
6: u = y + e; } // if (x != y) goto 7;]
7: j = k –– m;

With minimal control dependencies, the execution of instruc-
tions 3 through 7 does not depend on whether instruction 1 is
taken. Because instructions 3 through 7, including the branch at
5, can execute concurrently with instruction 1, more parallelism
is realized.

Table A. Classic data dependencies.
Dependency Alternate (hazard)

name name Example

Flow or True (read after write) 1. A = b + c
2. z = A ∗ y

Anti- (write after read) 1. z = A + c
2. A = y ∗ x

Output (write after write) 1. A = b + c
2. A = z ∗ y

.

the branch’s execution, but the target address is saved
in the branch target buffer. When the branch is exe-
cuted again, the availability of the target address elim-
inates the time penalty that would occur otherwise.
The buffer can also hold miscellaneous branch pre-
diction information, such as the predictor’s state.

Branch range reduction. This mechanism has two
approaches. One is to use the set of minimal control
dependencies. As the sidebar “How Dependencies Limit
Instruction-Level Parallelism” describes, the classical
model of control dependencies that all commercial and
most research processors use treats all dependencies as
true instead of recognizing the minimal set that are actu-
ally true. This is relatively inexpensive but misses sig-
nificant potential performance gains.3

Another form of this mechanism is predication, in
which some assignment statements are executed only
if another input to the statement, a predicate, is true.4

Block size increase. This mechanism increases the
distance between branches, thus increasing the size
of the average basic block and increasing the amount
of code available for parallelism. Techniques include
compiler-based methods, such as code percolation or
motion, or trace scheduling.5

SPECULATIVE EXECUTION
Speculative execution can be realized in hardware

or software and can be used among processors as well

as within them. Although speculative execution most
often refers to single-path, eager execution and the
more recent disjoint eager execution (DEE) are also
possible.6 Figure 1 illustrates their differences.

Typically one or two processing elements are
needed to execute the code in a branch path as con-
currently as possible. In the single-path strategy, these
resources are assigned linearly according to the num-
ber of branches pending. This strategy lowers hard-
ware cost, but the usefulness of increasing predictions
becomes negligible quite rapidly. The overall likeli-
hood or cumulative probability of execution of the
last branch path (at the tail of the tree) goes to zero,
making the added resources useless.

With the eager execution model, execution proceeds
down both paths of a branch, and no prediction is
made. When a branch resolves, all operations on the
not-taken paths are discarded. Consequently, eager
execution with unlimited resources (oracle execution),
would give the best performance, but it is hardly prac-
tical. With constrained resources, the eager execution
strategy does not perform very well.1 Also, hardware
cost rises exponentially with each level of branches,
and it is hard to keep track of different sets of opera-
tions. For these reasons, the eager execution strategy
is seldom used, except for limited applications, such
as instruction fetch and decode in the Sun SuperSparc
and IBM 360/91.

May 1997 73

Table 1. BERT mechanisms and implementations.
Mechanisms used

Branch Block Commercial
Speculative range size implementation

Technique execution reduction increase examples

Eager execution ✔ IBM 360/91, Sun SuperSparc
Disjoint eager execution

alone ✔ —
with minimal control dependencies (MCD) ✔ ✔ —

Single path
No branch prediction Intel 8086
Static

Always not taken ✔ Intel i486
Always taken ✔ Sun SuperSparc
Backward Taken; Forward Not Taken (BTFN) ✔ HP PA-7x00
Semistatic (profiling) ✔ Early PowerPCs

Dynamic
1-bit ✔ DEC Alpha 21064, AMD-K5
2-bit ✔ NexGen 586, PowerPC 604, Cyrix 6x86,

Cyrix M2, Mips R10000
Two-level adaptive ✔ Intel Pentium Pro, AMD-K6
Selector ✔ DEC Alpha 21264

Hybrid ✔ —
Multiscalar ✔ ✔ —

Other BERTs
Minimal control dependencies ✔ —
Predication alone ✔ ✔ Denelcor HEP
Predication with software ✔ ✔ ✔ Cydrome Cydra 5, Intel Pentium Pro
VLIW ✔ ✔ ✔ Multiflow Trace, Cydrome Cydra 5,

Intel/HP Merced (?)

.

74 Computer

The disjoint eager execution strategy performs bet-
ter than the other two strategies when resources are
limited. The idea is to assign resources to branch paths
whose results are most likely to be used; that is,
branch paths with the highest cumulative probabili-
ties of execution. Thus, all branches are predicted,
and some are eagerly executed. The hardware cost is
close to that of single-path, but performance is much
better. As the sidebar “Disjoint Eager Execution: A
Simulation Experiment” describes, speedups of 32 are
possible. Many instantiations of this strategy provide
variations in cost-accuracy trade-offs; we describe one
implementation in the sidebar.

Most speculative execution uses some form of
branch predictor. The latest ones are very accurate
but improve branch prediction accuracy by less than
a percent—an indication that branch prediction accu-
racy may be topping out. We describe the most com-
mon predictors here.

Static predictors
Static predictors operate by making hardwired pre-

dictions, typically that branches are executed as either
all not taken (Intel i486) or all taken (Sun SuperSparc).
These techniques cost practically nothing but have an
accuracy of only 40 to 60 percent. More involved but
still inexpensive methods also look at branch direc-
tion. BTFN (backward taken, forward not taken), for
example, predicts that all backward branches are
taken and all forward branches are not taken. Because
backward branches are taken typically 90 percent of
the time, BTFN improves branch prediction accuracy
to 65 percent. The HP PA-7x00 processors use this
strategy.

Semistatic predictors form a large class of static pre-
dictors. Again, predictions are constant over the pro-
gram’s execution. However, unlike other static
predictors, semistatic predictors vary across static
branches. And because the compiler makes these pre-
dictions, they are included in the machine instructions,
which means that if designers port this method to an
existing processor they must modify the processor’s
instruction set.

The compiler makes predictions using program pro-
file statistics, which it obtains by compiling the pro-
gram once and then running it on test data while
counting the times a branch is taken versus the times
it is not taken. The program is recompiled, using the
statistics to set the prediction bits in the object code’s
branches accordingly.

These predictors are limited because the statistics,
and hence predictions, can vary from the test data to
the actual data. Allowing predictions to vary from
branch to branch improves the prediction accuracies
of forward branches primarily; a typical forward
branch executes predominantly with one sign.
Therefore the branch prediction accuracy improves
to, on average, 75 percent. Many PowerPC proces-
sors use semistatic prediction.

Dynamic predictors
In dynamic prediction, predictions adapt to the

input data. A branch may execute consistently one
way in one part of the execution and the other way in
another part. A dynamic predictor can adapt to the
change and continue to make accurate predictions; a
semistatic predictor in a similar situation would give
wrong predictions much of the time. No profiling is
needed; dynamic prediction can be accomplished
entirely in hardware.

Dynamic predictors are typically 1-bit or 2-bit, so
named because of the storage needed to implement
them. The two-level adaptive predictor, a more recent
type, greatly increases the branch prediction accuracy
of the 2-bit predictor. The selector predictor allows
multiple predictors to be used together.

1-bit predictors. Figure 2a shows how a 1-bit predic-
tion algorithm uses state to predict that a branch will
execute next the same way. Nominally, there is a sepa-
rate automaton (state machine) for each static branch.

6
.12

5
.17

4
.24

3
.34

2
.49

1
.7

.05

.07

.10

.15

.21

.3

(a)

1 2

4 5

.7 .3

3
.49

6
.09.21.21

(b)

5
.24

3
.34

2
.49

1 4

6

.7

.10

.15

.21

.3

(c)

Figure 1. Speculative
execution strategies:
(a) single path, (b)
eager execution, (c)
disjoint eager execu-
tion. Each line
segment with an
arrow represents a
branch path.
Resources are fixed at
six branch paths. Bold
lines indicate the
code in the execution
window; resources
are assigned only to
bold lines (paths). All
branches are pending
(unresolved). Left-
pointing lines are pre-
dicted paths. Right-
pointing lines are
not-predicted paths.
Circled numbers indi-
cate the order of the
resource assignment.
Uncircled numbers
indicate the cumula-
tive probability that
the path will be exe-
cuted. For illustration,
branch prediction
accuracy is 70 percent
for all branches. The
disjoint eager execu-
tion strategy allocates
resources to more
likely paths than the
other strategies.

.

than the 1- or 2-bit predictors because the predic-
tor bases its predictions on specific branch histories,
not on a general averaging.

As Figure 3 shows, prediction involves two struc-
tures. The branch history register holds the branch
execution history. Each time a dynamic instance of
any branch resolves, its sign is shifted into the regis-
ter. The register helps prediction by capturing much
longer and more varied patterns of branch executions,
relative to a 2-bit predictor. The branch pattern table
contains a 2-bit counter automaton for each possible
pattern of the branch history register. Typically, a
processor uses one register and one table for all
branches.

The automata are accessed using the contents of the
branch history register as the table’s address (“index”
in the figure). As with the 1- and 2-bit predictors, the
state of the indexed automaton indicates the predic-
tion.

Using a single branch history register, the predictor
combines information from multiple branches, allow-
ing the correlation among different static branches

The state of the automaton becomes 1 if a branch is
actually taken and 0 if it is not. The new state indicates
the prediction for the next instance of the branch.

The automaton can be realized implicitly with a
branch target buffer. If the buffer contains an entry
for the branch, the branch was taken when last exe-
cuted, and the dynamic prediction algorithm predicts
that the same branch will be taken when next encoun-
tered. If there is no entry in the buffer, the branch was
not-taken when last executed, and the algorithm pre-
dicts it will be not taken again.

One-bit predictors have a branch prediction accu-
racy of 77 to 79 percent. The DEC Alpha 21064
processor uses this predictor, holding the state for up
to 2K automata.

2-bit predictors. Figure 2b shows the 2-bit saturat-
ing up/down counter developed by James Smith.7

Performance is better (78 to 89 percent accuracies on
real machines), but the cost is higher.

Each 2-bit automaton’s state is stored in a branch
target buffer. A branch is predicted by reading the
buffer and using the state of the automata. Branches
that are more often taken are predicted taken; like-
wise for not-taken branches. In this way, the predic-
tions are based on averaging.

The 2-bit predictor is less affected by occasional
changes in branch sign than the 1-bit predictor. In the
branch execution stream N-N-N-T-N-N-N, the 1-bit
predictor gives two mispredictions; the 2-bit predictor,
only one. However, the 2-bit predictor can potentially
be wrong 100 percent of the time (if starting from state
01, every branch in T-N-T-N-T-N... would be mis-
predicted).

Recent microprocessors, such as the NexGen 586
(2K automata) and the Intel Pentium (256 automata)
use this predictor.

Two-level adaptive predictor. Researchers at the
University of Michigan8 and later IBM and the
University of Texas9 devised the two-level adaptive,
or branch correlation, predictor, which is signifi-
cantly more accurate (typically 93 percent accuracy)

May 1997 75

(11)
predict:

T

(10)
predict:

T

saturated unsaturated unsaturated saturated

(01)
predict:

N

(00)
predict:

N

N

NT

T

N

State type

T

N

T

(b)

(1)
predict:

T

(0)
predict:

N

N

T N

T

(a)

Figure 2. Simple
dynamic branch pre-
dictors, which predict
if a branch is taken or
not taken by looking at
the most significant
bit of the predictor’s
state. This bit gives
the sign of the branch:
1 is “predict T(aken)”;
0 is “predict N(ot
taken).” A state tran-
sition occurs when a
branch resolves, and
is determined by that
branch’s sign. (a)
One-bit branch predic-
tor and (b) 2-bit pre-
dictor.

Branch
history
register

Branch
pattern
table

predict (0):
Not taken

sign of
latest
resolved
branch

shift direction

index

1 0 1 1

1 0

msb lsb

0 1

0

0000

1011

1111 0

Figure 3. Two-level
adaptive branch pre-
dictor. Each row of
the branch pattern
table is the
equivalent of the 2-bit
counter in Figure 2b.
The branch history
register holds the
signs of past branch
executions. The pre-
dictor uses this recent
history to index to a
particular automaton
in the branch pattern
table.

.

76 Computer

to be exploited. Implementers can also form the index
by concatenating or hashing part of the program
counter that identifies the static branch with the
branch history register. This slightly improves pre-
diction accuracy.

For the sequence T-N-T-N-T-N..., which the 2-bit
predictor may mispredict 100 percent of the time, the
adaptive predictor asymptotically correctly predicts
branches 100 percent of the time.

Multiple branch history registers and branch pat-
tern tables are possible. The two-level adaptive
method has nine possible configurations, but accu-
racy typically comes with a high hardware cost.
Fortunately, as hardware densities improve, the rela-
tive cost will become much lower.

The AMD-K6 uses the two-level adaptive predictor.

A single 9-bit history register is concatenated with 4
bits of the program counter to index a pattern table of
8K 2-bit counters. An undisclosed version of the two-
level method is also used in the Intel Pentium Pro (P6).

A variation of the two-level adaptive predictor adds
profiling information about the degree of a branch’s
predictability. This approach better allocates predic-
tor resources.

Selector predictors. The selector predictor10 uses
multiple predictors simultaneously: typically two
main predictors (although implementers can mod-
ify the selector predictor to choose from more than
two) and a selection predictor that chooses the bet-
ter of the two main predictors to predict a given
branch. The three predictors can be any combina-
tion of those already described. The selector pre-

Disjoint Eager Execution: A Simulation
Experiment

We simulated disjoint eager execution (DEE) and DEE
with minimal control dependencies (DEE-MCD) mod-
els using a heuristic devised by Augustus Uht.1 We also
simulated single-path speculative execution, eager exe-
cution, single-path speculative execution with minimal
control dependencies, and an oracle. We used a modified
version of Monica Lam and Robert Wilson’s simulator.2

The simulator operates on MIPS R3000 machine
code but assumes every instruction executes in one
cycle. Using the Smith 2-bit dynamic branch predic-
tor, we simulated five of the six SPECint92 bench-
marks,1 omitting the more predictable sc benchmark.
We traced each benchmark for up to 100 million
machine instructions. All models used the number of
branch path resources allowed as the independent vari-
able. This number and the geometric mean of the
SPECint92 benchmarks’ branch prediction accura-

cies—90.53 percent—determined the shape of the sim-
ulated static trees.

Execution model
As we describe in the main article, DEE works by

assigning resources only to the most likely paths to be
executed. The heuristic uses a logical static tree of
resources,1 shown in Figure A, to avoid determining
the most likely paths at runtime. The tree’s shape is
determined when a uniprocessor is designed. The
assumption is that the predictor exhibits the same
branch prediction accuracy on every branch. With a
constant accuracy, the tree has the same basic shape—
a relatively long mainline region with length l and rel-
atively few side paths. For a constant branch
prediction accuracy, the shape of the DEE region is the
lower right half of a square with side dimensions of
hDEE = wDEE.

From geometric analysis the relationship between

.66

.73

.81

.90 .10

ML
.01.09.09

.07

.08

.07 .07 .07

.08 .08

B1

B2

B3

B4

wDEE

hDEE= 4 pathsl = 24 paths

.08

DEE

Figure A. Typical static assignment tree in disjoint eager execution. ML is the mainline path or region. The number on each
path is the overall cumulative probability of the path’s execution. The execution of ML can be realized via single-path spec-
ulative execution. Each composite DEE path to the side (gray paths; each one to four branch paths long, in this example)
can be treated with single-path execution within itself. All the composite DEE paths form the DEE region. Branch prediction
accuracy is 90 percent. The total number of branch paths is 34.

.

dictor is successful because a particular branch is
often predicted more accurately by a certain pre-
dictor.

This method was adopted in the DEC Alpha 21264
in Fall, 1996. The total state storage for this imple-
mentation is greater than 28K bits.

Hybrid predictor
The hybrid predictor11 combines the static profiling of

semistatic prediction with the dynamic branch correla-
tion of the two-level adaptive method. Each static branch
again contains a prediction bit, but the profiling phase is
much more involved. The predictor records different
instruction sequences during execution up to each static
branch, Y, indicating how the dynamic branches that
occurred before Y executed. The predictor then modi-

May 1997 77

branch prediction accuracy (BPA), hDEE, and ET (total number of
branch paths in the tree) is

ET = logBPA (1 − BPA) + 1/2hDEE
2+ 3/2hDEE − 1

Using the quadratic formula, we solve this equation for hDEE.
The mainline length l is given by

l = hDEE + logBPA (1 − BPA) − 1

Therefore, to determine the tree’s shape at design time, the
designer first determines the likely value of the branch prediction
accuracy of the branch predictor to be used by analyzing execu-
tion traces of representative target application and operating sys-
tem codes. The designer also determines the total resources (cost)
allowable for the machine, giving ET.

To get the the tree’s dimensions, the designer simply plugs the
BPA and ET values into the above equations. Of course, detailed
study would then fine-tune these dimensions.

At runtime the actual control flow maps onto the tree, and the
tree moves down the dynamic trace of execution as branches
resolve at the tree’s root. Code executes only when in the tree; the
tree is the CPU’s window. Implementers can use this execution
model either within or among uniprocessors.

Results
Figure B shows the results of the simulations. For 100 branch

paths, the DEE-MCD model is 31.90 times (3,090 percent) faster
than the sequential machine. The jump in performance from 16
to 32 paths is a result of DEE being the same as single-path spec-
ulative execution for 16 paths and below.

These results indicate that DEE is effective in models with
fewer resources. The speedup is three times better than that
achievable with an unlimited resource version of single-path
speculative execution with a selector predictor.3 They also show
that the DEE-MCD model exploits about 59 percent of the
instruction-level parallelism that can be obtained from these
benchmarks (which we determined by comparing it with the
oracle simulations).

We plan to use the DEE-MCD model in Levo, a prototype
machine we are developing at the University of Rhode Island. Tens
of branches may be predicted, resolved, or executed per cycle in
any way, taken or not taken. The time penalty to recover from

mispredictions is 0 or 1 cycle for any type or number of mispre-
dictions occurring in the same cycle. We anticipate 32 processing
elements for Levo, to yield a speedup in instruction-level paral-
lelism of 20 or more. We estimate that Levo could fit on a single
chip by about 2000.

References
1. A. Uht and V. Sindagi, “Disjoint Eager Execution: An Optimal Form

of Speculative Execution,” Proc. 28th Int’l Symp. Microarchitec-
ture, IEEE CS Press, Los Alamitos, Calif., 1995, pp. 313-325.

2. M. Lam and R. Wilson, “Limits of Control Flow on Parallelism,”
Proc. 19th Annual Int’l Symp. Computer Architecture,” ACM Press,
New York, 1992, pp. 46-57.

3. D. Wall, “Limits of Instruction-Level Parallelism,” Tech. Report
93/6, Digital Western Research Laboratory, Palo Alto, Calif., 1993.

Figure B. DEE simulation results on five SPECint92 benchmarks (sc omit-
ted). Speedup is with respect to a strictly sequential model, computed as
the harmonic mean of the five individual benchmarks’ speedups.The best
performance occurs when DEE is combined with the minimal control
dependencies model. Results are about 10 times better than those previ-
ously demonstrated, either in simulations or on real machines.

0

5

10

15

20

25

30

35

8 16 32 64 128 256

Resources (branch paths)

Oracle speedup: 53.82

Sp
ee

d
u

p

DEE-MCD
Single path-MCD
DEE
Single path
Eager execution

fies the object code to allow different static predictions of
Y to be used at runtime. It does this by copying Y and its
branch path for each unique sequence through Y, and
setting each Y-copy’s prediction bit according to the likely
sign of Y for the corresponding sequence.

Thus, Y is effectively predicted at runtime accord-
ing to the program’s actual control flow, but not
directly on the basis of Y’s dynamic execution his-
tory. Because Y’s predictions can vary dynamically
and adapt to some of the program dynamics, hybrid
prediction has a branch prediction accuracy of
about 88 percent versus semistatic prediction’s accu-
racy of about 75 percent. However, it does not
adapt as well as the two-level adaptive method,
which also takes into account Y’s history. Also,
object code may increase significantly because of

.

78 Computer

code replication. On the other hand, no predictor
hardware is needed.

Implementation issues
Branch prediction systems are constrained by the

number of predictions that may be made simultane-
ously. To realize greater speedups from exploiting
instruction-level parallelism, a predictor must make
multiple predictions per cycle—yet most current
machines allow only one branch to be predicted at a
time. The Levo machine,6 which we briefly describe in
the sidebar “Disjoint Eager Execution: A Simulation
Experiment,” allows up to 32 predictions per cycle.
Philip Emma and his colleagues at IBM Yorktown
Heights have also devised hardware that allows many
predictions per cycle.

Confidence predictors indicate what branch pre-
dictions are likely to be correct, which will aid
machines using forms of eager execution (these pre-
dictors have not yet been used in a real machine).
Confidence predictors can use the same basic struc-
tures as branch predictors.

Another implementation model is multiscalar
machines, which are being studied at the University of
Wisconsin.12 In this model the compiler divides a pro-
gram into smaller computation blocks, or tasks.
Because the dynamic task sequence is predicted, single-
path speculative execution is performed at the task
level. Task predictors use solutions similar to those for
branch prediction, except that the prediction may have
more than two possible outcomes, corresponding to
multiple exits from a task. Task sequences are pre-
dicted independently of branch predictions within the
tasks. The task graph is included in the object code.
Each task is executed by a typical superscalar pro-
cessing engine. The engines in a multiscalar machine
attempt to execute tasks concurrently.

The drawback is that the instruction set must be
modified, requiring recompilation. With additional
research, the available instruction-level parallelism
may increase.

BRANCH RANGE REDUCTION
Approaches that use this mechanism include min-

imal control dependencies and predication.

Minimal control dependencies
The minimal control dependencies model allows the

execution of both assignment and branch instructions
absolutely, not speculatively, in parallel with earlier
branches. To our knowledge, it has been hardware-
implemented only in the Condel simulators.13 The
gains in instruction-level parallelism are modest when
this technique is used alone, but increase significantly
with single-path speculative execution or disjoint eager
execution.

Using minimal control dependencies decreases the
effect of mispredictions relative to the classical con-
trol dependencies model. With the classical model, all
instructions after the mispredicted branch are dis-
carded; with the minimal control dependencies model,
only the truly dependent instructions—many fewer—
are discarded.

Predication
Predication4 is receiving much attention. As Table 2

shows, a predication algorithm puts the Boolean results
of condition testing into predicate registers and elimi-
nates branches. Instructions that were dependent on a
branch now have a 1-bit predicate register as input. An
instruction executes only if its predicate is true.

Predication eliminates some branches and their
associated control dependencies, increasing the dis-
tance between mispredictions. But it also affects the
instruction set, adds a port to the CPU register file,
and complicates instruction execution. Moreover,
without sophisticated compilers, predication does not
realize much instruction-level parallelism.

There is a nominal increase in branch prediction
accuracy, but it is artificial: The overall code depen-
dencies do not decrease below those with minimal
control dependencies because the control dependen-
cies removed by predication become data dependen-
cies. Future research may improve predication results.

BLOCK SIZE INCREASE
The best known technique to increase basic block

size is compiler-based trace scheduling, which is used
in most VLIW (very long instruction word) comput-
ers, for example, the Multiflow Trace.5 Trace sched-
uling unrolls loops to make the block larger. Profiling
is used to estimate the most likely path or “trace”
through the code.

Machine operations that can be executed in paral-
lel are grouped into VLIW machine instructions.
Typically, each instruction includes both assignment
operations and a multiway branch. Operations within
a VLIW instruction are independent, so scheduling or
dependency-checking hardware is not needed.
However, recompilation is necessary whenever the
processor is replaced. Because recompilation is not

Table 2. Classic code versus predicated code.
Classic code Predicated code

1. if (a==b) { 1. Pred = (a==b); //Pred set to true if a equals b.
2. z=x+y; 2. IF (Pred) THEN z=x+y; //Operations performed only
3. w=a+b; } 3. IF (Pred) THEN w=a+b; // if Pred true.
4. // later instructions 4. // later instructions: NOT dependent on 1.

// all dependent on 1.

.

always possible, VLIW machines have a limited appeal.
Also, they do not typically exploit code dynamics.

Trace scheduling often greatly increases object code
size. Further, it is not clear that VLIW machines can
use the minimal control dependencies model to exe-
cute multiple multiway branches in parallel—a diffi-
cult problem. Research efforts continue. For example,
Intel and Hewlett-Packard have joined in a project to
create a new microprocessor (Merced or P7) compat-
ible with both the Intel x86 and HP Precision archi-
tectures. This microprocessor may be VLIW based.

Variations
Software pipelining is a variant of trace scheduling

and uses the minimal control dependencies model.
This variant can sometimes achieve the equivalent of
eager execution performance, but with less hardware.

Other techniques, such as boosting or spreading use
some VLIW methods. One method is code motion, in
which instructions are moved at compile-time to enhance
the amount of instruction-level parallelism available to
the target machine. The speedup realized with VLIW or
VLIW-aided methods is typically less than 3.

Implementation issues
When a processor is changed, updating the machine

code is often costly or impractical because recompila-
tion is not possible. For that reason, users tend to stay
with the same instruction set architecture. This limits
the use of techniques that require changes to existing
instruction sets. On the other hand, this constraint may
not always apply, such as for embedded machines.

COMPARATIVE PERFORMANCE
Table 3 summarizes the techniques we have

described and gives performance results. Results are
based on de facto standard general-purpose bench-
marks—the SPECint92 suite. When this data was not
available, we used the data closest to those benchmarks.

We give each technique’s performance in terms of
speedup factors and branch prediction accuracy. The
“BPA, real” column consists of numbers that include
hardware and code limitations and are based on real
machines. The “BPA, research” column consists of fig-
ures from studies that look at the techniques in isolation.

We also include the hardware and software charac-
teristics needed to obtain that performance. Only the

May 1997 79

Table 3. Comparative performance of branch effect reduction techniques.
Characteristics

Performance Hardware Software
ILP BPA, BPA, Real Instruction

speedup research real machine set Hardware Code size Profiling Recompilation Software
Technique realized (percent) (percent) hardware modified? cost increase? necessary? necessary? complexity

Single path with the specified branch predictor in order of increasing BPA
None 1.6 —* — None No 0 No No No 0
Always not taken NA* NA 40 Little No 1 No No No 0
Always taken NA 61-75 60 Little No 1 No No No 0
BTFN NA NA 65 Little No 2 No No No 0
Semistatic (profiling) 1.5 83.4 75 1 op code bit Yes 3 No Yes No 2
Hybrid NA 88 — 1 op code bit Yes 4 Yes; 2 Yes No 3
Dynamic (1-bit) NA 90 77-79 1K-2K entries No 4 No No No 0
Dynamic (2-bit) 2.9 90-92.2 78-89 256-4K entries No 5 No No No 0
Dynamic (adaptive) 3.6 90-96 90-94 ≥2K bits No 6 No No No 0
Selector NA 93-97 NA ≥28K bits No 7 No No No 0
Other reduction techniques using various branch predictors in order of increasing speedup
Predication (alone) 1.6 — — Sev. op code bits Yes 7 No No No 0
MCD (hardware) 2.1 — — — No 7 Yes; 1 No No 1
Multiscalar 2.6 — — Sev. op code bits Yes 8 Yes; 1 No Yes 3
Predication
(with software) 3.0 — — Sev. op code bits Yes 7 Yes; 1 Yes No 4

VLIW-based 3.6 — — None Yes 0 Yes; 3 Yes Yes 4
Eager execution 7.6 — — 1 branch bypassed No 9 No No No 0
Disjoint EE 8.5 — — — No 7 No No No 0
DEE w/ MCD 31.9 — — — No 8 Yes; 1 No No 1

* “NA” means not available; a “—” means the characteristic is not relevant or that the technique has not been used in a real machine.

.

80 Computer

single path with “None” assumes unrestricted resources.
Hardware attributes include typical hardware cost
(“Real machine hardware”), whether the instruction set
is affected, and a ranking of the hardware costs. The
“Real machine hardware” column contains the term
“entries.” An entry is the state (memory bits) for one
automaton. “Op code bits” are additional bits required
in either branch or assignment instructions.

Software characteristics include whether object
code size increases and whether program profiling or
recompilation is necessary in a machine upgrade or
downgrade. We also rank software complexities.

All ranking is based entirely on our opinion.
Ranking is by order only specific to that column, from
best (lowest number) to worst (highest number).

We took data in the performance columns and
actual hardware cost from various sources, most of
which are references included at the end of this arti-
cle. Much of the data is from various issues of the
Microprocessor Report newsletters.14 We could not
cite all our sources, but they are available via
http://www.ele.uri.edu/~uht. In the “ILP speedup
realized” column, speedup numbers are factors from
research machine simulations. Each factor (minus 1)
represents a 100x percentage. That is, a 1.6 speedup
translates to 60 percent faster. Each was computed
as the harmonic mean of the individual benchmarks’
speedups. A technique’s actual operation and its sim-
ulated operation differ in varying degrees from tech-
nique to technique and study to study.

In the “Other reduction techniques” section of the
table (bottom half), the techniques MCD (hardware-
based) and DEE-MCD work best with some binary-
to-binary code translation via a filter program run
once for an application program. The main action
performed is limited loop unrolling. The filter is not
required for correct code execution. The data given
for DEE-MCD is for a hardware-based implementa-
tion with a 2-bit dynamic predictor, although soft-
ware-based implementation is also possible.

The commercial exploitation of instruction-level
parallelism has really just begun. Branch effect
reduction techniques can be implemented in

hardware, software, or both to free up more paral-
lelism and speed up the execution of general-purpose
code. Software-based methods are good when hard-
ware cost is a prime issue, instruction set compatibil-
ity is not required, and average performance is
acceptable. Otherwise, hardware methods are better.
For those who want to read about existing methods
in more detail, an IEEE tutorial15 and the proceedings
of the International Symposium on Microarchitecture
(IEEE Computer Society Press) are excellent sources.

Although branch prediction accuracies of up to 95

percent can be realized with single-path speculative
execution alone, new methods are needed to break
this barrier. Simulations of disjoint eager execution
with minimal control dependencies have demon-
strated an improvement 10 times greater than results
with existing methods. In the near future, especially
as hardware densities increase, these results should be
possible commercially as well. ❖

Acknowledgments
This work was supported by Intel, the University of

Rhode Island Research Office, and the National
Science Foundation through grant CCR-8910586. We
thank Monica Lam and Robert Wilson of Stanford
University for their simulator and their assistance, Qing
Yang and the referees for their comments on drafts of
this article, and Laurette Bradley for both her com-
ments on earlier drafts and for her constant support.
Finally, we thank all those who have published their
work on instruction-level parallelism and wish we
could have formally acknowledged many more.

References
1. E. Riseman and C. Foster, “The Inhibition of Potential

Parallelism by Conditional Jumps,” IEEE Trans. Com-
puters,” Dec. 1972, pp. 1,405-1,411.

2. D. Wall, “Limits of Instruction-Level Parallelism,” Tech.
Report 93/6, Digital Western Research Laboratory, Palo
Alto, Calif., 1993.

3. M. Lam and R. Wilson, “Limits of Control Flow on Par-
allelism,” Proc. 19th Annual Int’l Symp. Computer
Architecture, ACM Press, New York, 1992, pp. 46-57.

4. B. Rau et al., “The Cydra 5 Departmental Supercom-
puter,” Computer, Jan. 1989, pp. 12-35.

5. R. Colwell et al., “A VLIW Architecture for a Trace
Scheduling Compiler,” IEEE Trans. Computers, Aug.
1988, pp. 967-979.

6. A. Uht and V. Sindagi, “Disjoint Eager Execution: An
Optimal Form of Speculative Execution,” Proc. 28th
Int’l Symp. Microarchitecture, IEEE CS Press, Los Alami-
tos, Calif., 1995, pp. 313-325.

7. J. Smith, “A Study of Branch Prediction Strategies,”
Proc. 8th Annual Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., 1981, pp. 135-148.

8. T.-Y Yeh and Y. Patt, “Two-Level Adaptive Training
Branch Prediction,” Proc. 24th Annual Symp. and Work-
shop Microarchitecture, IEEE CS Press, Los Alamitos,
Calif., 1991, pp. 51-61.

9. S.-T. Pan, K. So, and J. Rahmeh, “Improving the Accu-
racy of Dynamic Branch Prediction Using Branch Cor-
relation,” Proc. 5th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, ACM
Press, New York, 1992, pp. 76-84.

The
commercial
exploitation
of instruction-
level
parallelism
has really
just begun.

.

10. S. McFarling, “Combining Branch Predictors,” Tech.
Report TN-36, Digital Western Research Laboratory,
Palo Alto, Calif., 1993.

11. C. Young and M. Smith, “Improving the Accuracy of
Static Branch Prediction Using Branch Correlation,”
Proc. 6th Annual Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, ACM
Press, New York, 1994, pp. 232-241.

12. G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Annual Int’l Symp. Computer
Architecture, ACM Press, New York, 1995, pp. 414-425.

13. A. Uht, “A Theory of Reduced and Minimal Procedural
Dependencies,” IEEE Trans. Computers, June 1991, pp.
681-692.

14. L. Gwennap, “New Algorithm Improves Branch Predic-
tion,” Microprocessor Report, Mar. 27, 1995, pp. 17-21.

15. Instruction-Level Parallel Processors, H. Torng, and S.
Vassiliadis, eds., IEEE CS Press, Los Alamitos, Calif., 1995.

Augustus K. Uht is an assistant professor in electrical
and computer engineering at the University of Rhode
Island. He is also a member of the university’s High-
Performance Computing Laboratory, where he leads
the Levo High ILP Prototype Computer project. His
research interests focus on the enhancement of paral-
lelism through the reduction of branch effects, but also
include general computer architecture, memory sys-
tems, digital system design, and parallel computing.
Uht received a BS and an MEng(Elect) from Cornell
University, and a PhD from Carnegie Mellon Univer-
sity—all in electrical and computer engineering. He is
a licensed professional engineer and a member of
Sigma Xi, IEEE, IEEE Computer Society, ACM, and
National Society of Professional Engineers.

Vijay Sindagi is a design engineer at Texas Instruments
(ASIC), Dallas, where his interests include computer
architecture, compilers, and ASIPs. Sindagi received a
BS in electrical engineering from Bangalore Univer-
sity, India, and an MS in computer engineering from
the University of Rhode Island. He is a member of
ACM.

Sajee Somanathan is a software engineer at ADE
Corp. His current interests include instruction-level
parallelism, parallel computer architecture, branch
prediction, and performance evaluation. Somanathan
received a BTech from the College of Engineering,
Trivandrum, India, and an MS in computer engineer-
ing from the University of Rhode Island.

Contact Uht at Dept. of Electrical and Computer Engr.,
University of Rhode Island, Kelley Hall, 4 East Alumni
Ave., Kingston, RI 02881-0805; uht@ele.uri.edu.

Industrial
Strength
Software
Effective Management
Using Measurement
by Lawrence H. Putnam
and Ware Myers

Presents the valuable infor-
mation you need for ensur-
ing the effective
management of projects, the
attainment of reliable prod-

ucts, and the continuing improvement of the software
process. If you are a software development executive,
manager, supervisor, technologist, analyzer, or tester
then you need a firm grasp of the three phases of
software management that this book provides.

With this book, you will be able to overcome the chaos
normally associated with developing software by using
a well-managed, defined, planned, and disciplined
process. The book provides you with the metrics and
measures to more effectively deal with the progress of
individual projects, reliability of the process, and long-
run improvement of the development process itself.
328 pages. Softcover. February 1997. ISBN 0-8186-7532-2.
Catalog # BP07532 — $35.00 Members / $42.00 List

Software Require-
ments
Engineering
Second Edition
edited by Richard H. Thayer
and Merlin Dorfman
Foreword by Alan M. Davis

This new edition describes
current best practices in
requirements engineering
with a focus primarily on soft-

ware systems but also on systems that may contain
other elements such as hardware or people. The text
consists of original papers, written by experts in the
field, plus revisions of papers from the first edition. The
book begins with an introduction to current
issues and the basic terminology of the software
requirements engineering process. The text covers
the five phases of software requirements engineering
that need to be performed to reduce the chance of soft-
ware failure: elicitation, analysis, specification,
verification, and management.
540 pages. Softcover. February 1997. ISBN 0-8186-7738-4.
Catalog # BP07738 — $50.00 Members / $60.00 List

Order from the our secure web site at
http://computer.org/cspress

using the convenient shopping cart
Call +1-800-CS-BOOKS

.

