
Realizing High IPC Using Time-Tagged
Resource-Flow Computing

! .

Augustus K. Uht
Dept. of Electrical and
Computer Engineering

Alireza Khalafi
David Morano
Marcos de Alba

David Kaeli
Dept. of Electrical and
Computer Engineering

&

Euro-Par August 28, 2002

2 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Acknowledgements

Work supported by:
� U.S. National Science Foundation
� URI Office of the Provost
� Intel
� Mentor Graphics
� Xilinx
� Ministry of Education, Culture and Sports

of Spain (D. Kaeli)

3 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Outline

1. Closely Related Work
2. Needs and Solutions
3. High-Level Architecture and Microarchitecture
4. Time-Tag Example
5. Resource-Flow Execution
6. High-IPC Multipath Method Example
7. Experiments
8. Summary

4 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Closely Related Work

� Riseman & Foster (1972), Lam & Wilson (1992) and
others (unconstrained resources):

much ILP in General Purpose code: > x100
� But: little IPC realized in real machines: ~ 1-2
� Segmented IQ�s � ISCA2002, etc.: don�t scale,

in dispatch stage, PE�s not distributed; we predate.
� Tomasulo �67 � elegant, but doesn�t scale
� Limited register lifetime � Sohi et al �92

� One key to Levo scalability
� Warp machine � Cleary et al �95 � time-tags

� Basic idea good, but used floating-point tags

5 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Needs and Solutions

1. Cheap and scalable dependency detection & operand
linking
! time-tags (small): link & order operand usage.

2. Little cycle-time impact & scalability
! constant length segmented or spanning buses

3. Simple execution algorithm
! resource-flow execution: Instructions flow to
PE�s, executed regardless of dependencies.

4. High IPC ! hardware predication &
Disjoint Eager Execution (DEE) - smart multipath

5. Legacy code ! ISA independent, no compiler assist

High-
Level
Archi-
tecture

C
o
l
u
m
n

0

C
o
l
u
m
n

1

C
o
l
u
m
n

2

C
o
l
u
m
n

m-1

L1

D-
C
a
c
h
e

L1

I-
C
a
c
h
e

Commit
- memory stores

Temporally
Earliest

Instruction

Temporally
Latest

Instruction

AS

Active
Station
(holds 1
Instruc-

tion)
[0, 2]

n X m Execution
Window

I-
F
e
t
c
h

Instruction
Window

(Unified L2 Cache
and Main Memory

not shown.)

Processing Elements (PEs) are distributed among AS�s.

memory
loads

6

from previous columnfrom previous columnfrom previous column

to next columnto next columnto next column

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

Column 1i- Column 1i+Column i

SGSG SG

SGSG SG

SGSG SG

Micro-
archi-
tecture
(Execution
Window)

�Note: no
central
register file:
Reg. Fwd.
Units used

�SG: Sharing
Group

7

8 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Active Station (AS)
� LSTT (Last-Snarfed Time Tag) is key to operand linking

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus
(spanning bus)

(Snoop: look at bus
Snarf: read off of bus)

Ti
m

e-
Ta

g
Ex

am
pl

e

(i) Program Code (ii) With Time Tags

Instruction
Number

Instruction,
Result Time Tag

(ResTT)

Sequential
Execution

(at end,
R3 holds �2�)

1.

5.

9.

R4 = 1

R4 = 2

R3 = R4

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
 � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
 � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first;
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Case 1

Case 2

9

Ti
m

e-
Ta

g
Ex

am
pl

e

(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
 � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
 � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first;
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I1):

TT: 1 R: 4 V: 1

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT -1 ! 1, VALUE ! 1

bus

I9 needs closest previous
value of R4. Case 1:

10

Ti
m

e-
Ta

g
Ex

am
pl

e

(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
 � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
 � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first;
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I5):

TT: 5 R: 4 V: 2

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT 1 ! 5, VALUE ! 2

bus

DONE (Case 1):
R3 =2

11

Ti
m

e-
Ta

g
Ex

am
pl

e

(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
 � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
 � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first;
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I5):

TT: 5 R: 4 V: 2

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT -1 ! 5, VALUE ! 2

bus

I9 needs closest previous
value of R4. Case 2:

DONE:
R3 =2

12

Ti
m

e-
Ta

g
Ex

am
pl

e

(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
 � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
 � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first;
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I1):

TT: 1 R: 4 V: 1

AS (I9): Snoop and NO Snarf:

TT < LSTT, R=ADDRESS:

LSTT stays at 5,
VALUE stays at 2.

bus

I9 already has closest
previous value (Case 2):
Already DONE: R3 =2

13

14 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Resource-Flow Execution

What it is:
Execute everything, then clean up.

(Example of this: in last set of slides, if: I1, I5, I9 all
execute in first cycle, then either Case 1 or 2.)

Or, more precisely:
Execute any instruction regardless of the presence

of its operands or predicates,
resources permitting, then apply programmatic

constraints to obtain correct execution.

15 of 25URI - - NEU - Euro-Par Aug. 28, 2002

High-IPC Methods

� Hardware predication:
� Predicates generated with hardware
� Branch domains determined with hardware

� D-paths: multipath execution based on DEE
� Not-predicted path of some branches executed just-

in-case; has lower priority for resources

from previous columnfrom previous columnfrom previous column

to next columnto next columnto next column

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

Column 1i- Column 1i+Column i

SGSG SG

SGSG SG

SGSG SG

M DM D M D
Micro-
archi-
tecture
(Execu-

tion
Window)

��M� �
Mainline
Path

��D� �
DEE Path

16

from previous columnfrom previous columnfrom previous column

to next columnto next columnto next column

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

Column 1i- Column 1i+Column i

SGSG SG

SGSG SG

SGSG SG

Micro-
archi-
tecture

M D

��M� �
Mainline Path

��D� �
DEE Path

��B-nt� �
Branch pred.
not taken

M D M D

B-nt B-t

17

from previous columnfrom previous columnfrom previous column

to next columnto next columnto next column

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

Column 1i- Column 1i+Column i

SGSG SG

SGSG SG

SGSG SG

Micro-
archi-
tecture

M D

��M� �
Mainline Path

��D� �
DEE Path

��B� �
Branch
mispredicted

M D M D

B-nt B-t

18

from previous columnfrom previous columnfrom previous column

to next columnto next columnto next column

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

RFU

AS AS

AS AS
PE

Column 1i- Column 1i+Column i

SGSG SG

SGSG SG

SGSG SG

Micro-
archi-
tecture

D M

��D� ! �M�
Mainline Path

��M� ! �D�
DEE Path

��B-t� �
Branch now
pred. taken

M D M D

B-t

19

20 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Experimental Methodology

� Trace-driven simulator used
� MIPS-1 ISA binaries simulated
� Five SPECint95 and SPECint2000 benchmarks

simulated
� L1 D-cache: 1 cycle hit, 10 cycles miss
� L1 I-cache, L2, memory: perfect (100% hit)
� Baseline Machine (BM): bound by true

dependencies, no time-tagging, no resource flow,
no D-paths.

� BM-CM: baseline with Conventional Memory

21 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Experiments

� Varying machine configuration:
s(SG�s/column) a(M-path AS�s /SG) c(columns)
[c is # M-path columns,
is also # D-path columns when present]

� CM vs. PM (Perfect Memory: 100% L1 hit)
� BL: baseline � no resource flow, no D-paths

vs. RF: w/resource flow but no D-paths
vs. D: w/resource flow and D-paths

22 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Raw IPC vs. Configuration

Machine SGs per ASs per Columns gzip gap parser bzip go
Config Column SG BL-CM BL-CM BL-CM BL-CM BL-CM

IPC IPC IPC IPC IPC
s4a4c4 4 4 4 2.3 2.4 1.8 1.9 1.7
s8a4c4 8 4 4 2.8 3.5 2.4 2.5 2.4
s8a4c8 8 4 8 2.9 3.9 2.5 2.7 2.5
s8a8c8 8 8 8 4.1 4.4 2.7 2.9 2.7
s16a8c4 16 8 4 3.1 3.9 2.5 2.6 2.5
s8a4c16 8 4 16 3.1 4.2 2.5 2.5 2.5

Levo machine configurations and BL-CM IPC values for the 5 benchmarks.
s = SGs per column, a = ASs per SG and c = Columns.

23 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Speedups vs. Config. & Machine Type

Harmonic Mean

0.00

0.50

1.00

1.50

2.00

2.50

3.00

s4a4c4 s8a4c4 s8a4c8 s8a8c8 s16a8c4 s8a4c16

IP
C

 S
pe

ed
up

 o
ve

r
B

-C
M

B-PM
RF-CM
RF-PM
D-CM
D-PM

Overall IPC ~ 7.9

24 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Summary

� :
� New execution core
� Novel techniques for scalability with low cycle time
� Time-Tags & Resource Flow Execution are wins
� High-IPC, & more there:

� D-CM with branch oracle: about 50% more IPC

� Conventional memory IPC close to perfect memory
� D-paths quite effective at improving performance

25 of 25URI - - NEU - Euro-Par Aug. 28, 2002

Relevant Web Sites

Levo links:
www.ele.uri.edu/~uht

Or: www.levo.org

Levo visualization (direct):
ovel.ele.uri.edu:8080

http://www.ele.uri.edu/~uht
http://www.ele.uri.edu/~uht
http://www.levo.org/
http://www.levo.org/
http://ovel.ele.uri.edu:8080/

	Realizing High IPC Using Time-Tagged Resource-Flow Computing ? .
	Acknowledgements
	Outline
	Closely Related Work
	Needs and Solutions
	High-LevelArchi-tecture
	Micro-archi-tecture(Execution Window)
	Active Station (AS)
	Time-Tag Example
	Time-Tag Example
	Time-Tag Example
	Time-Tag Example
	Time-Tag Example
	Resource-Flow Execution
	High-IPC Methods
	Micro-archi-tecture(Execu-tion Window)
	Micro-archi-tecture
	Micro-archi-tecture
	Micro-archi-tecture
	Experimental Methodology
	Experiments
	Raw IPC vs. Configuration
	Speedups vs. Config. & Machine Type
	Summary
	Relevant Web Sites

