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Closely Related Work

� Riseman & Foster (1972), Lam & Wilson (1992) and 
others (unconstrained resources): 

much ILP in General Purpose code:  > x100
� But:  little IPC realized in real machines:  ~ 1-2
� Segmented IQ�s � ISCA2002, etc.: don�t scale,

in dispatch stage, PE�s not distributed; we predate.
� Tomasulo �67 � elegant, but doesn�t scale
� Limited register lifetime � Sohi et al �92

� One key to Levo scalability
� Warp machine � Cleary et al �95 � time-tags

� Basic idea good, but used floating-point tags
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Needs and   Solutions

1. Cheap and scalable dependency detection & operand 
linking 
! time-tags (small): link & order operand usage.

2. Little cycle-time impact & scalability
! constant length segmented or spanning buses

3. Simple execution algorithm
! resource-flow execution: Instructions flow to 
PE�s, executed regardless of dependencies.

4. High IPC ! hardware predication & 
Disjoint Eager Execution (DEE) - smart multipath

5. Legacy code ! ISA independent, no compiler assist
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Active Station (AS)
� LSTT (Last-Snarfed Time Tag) is key to operand linking

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus 
(spanning bus) 

(Snoop: look at bus
Snarf: read off of bus)
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(i) Program Code (ii) With Time Tags

Instruction
Number

Instruction,
Result Time Tag

(ResTT)

Sequential
Execution

(at end,
R3 holds �2�)

1.

5.

9.

R4 = 1

R4 = 2

R3 = R4

1

5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Case 1

Case 2
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(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5
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R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I1):

TT: 1    R: 4    V: 1

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT  -1 ! 1,  VALUE ! 1

bus

I9 needs closest previous 
value of R4.  Case 1:
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(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5
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R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
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LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
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.
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1, then 5

Broadcast (I5):

TT: 5    R: 4    V: 2

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT  1 ! 5,  VALUE ! 2

bus

DONE (Case 1):
R3 =2
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(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)
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5

9

R4 = 1

R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag

In Active Station
(LSTT).

.

�

�

1, then 5

Broadcast (I5):

TT: 5    R: 4    V: 2

AS (I9): Snoop and Snarf:

TT >= LSTT, R=ADDRESS:

LSTT  -1 ! 5,  VALUE ! 2

bus

I9 needs closest previous 
value of R4.  Case 2:

DONE:
R3 =2
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(ii) With Time Tags

Instruction,
Result Time Tag

(ResTT)

1

5

9
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R4 = 2

R3 = R4
Out-of-Order (OOO) Execution.
- I1 result and ResTT broadcast,
       � R3 = 1, LSTT = 1
- I5 result and ResTT broadcast,
       � R3 = 2, LSTT = 5
(at end, R3 holds �2�)
(Same result if I5 broadcasts first; 
LSTT is set to and stays at �5�;
I1 result not snarfed by I9.)

Last Snarfed
Time Tag
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.

�

�

1, then 5

Broadcast (I1):

TT: 1    R: 4    V: 1

AS (I9): Snoop and NO Snarf:

TT < LSTT, R=ADDRESS:

LSTT  stays at 5,  
VALUE stays at 2.

bus

I9 already has closest 
previous value (Case 2): 
Already DONE: R3 =2
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Resource-Flow Execution

What it is:
Execute everything, then clean up. 

(Example of this: in last set of slides, if: I1, I5, I9 all 
execute in first cycle, then either Case 1 or 2.)

Or, more precisely:
Execute any instruction regardless of the presence 

of its operands or predicates, 
resources permitting, then apply programmatic 

constraints to obtain correct execution.
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High-IPC Methods

� Hardware predication:
� Predicates generated with hardware
� Branch domains determined with hardware

� D-paths: multipath execution based on DEE
� Not-predicted path of some branches executed just-

in-case; has lower priority for resources
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Experimental Methodology

� Trace-driven simulator used
� MIPS-1 ISA binaries simulated
� Five SPECint95 and SPECint2000 benchmarks 

simulated
� L1 D-cache: 1 cycle hit, 10 cycles miss
� L1 I-cache, L2, memory: perfect (100% hit)
� Baseline Machine (BM): bound by true 

dependencies, no time-tagging, no resource flow, 
no D-paths.

� BM-CM: baseline with Conventional Memory
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Experiments

� Varying machine configuration:
s(SG�s/column) a(M-path AS�s /SG) c(columns)
[c is # M-path columns, 
is also # D-path columns when present]

� CM vs. PM (Perfect Memory: 100% L1 hit)
� BL: baseline � no resource flow, no D-paths

vs. RF: w/resource flow but no D-paths
vs. D: w/resource flow and D-paths
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Raw IPC vs. Configuration

Machine SGs per ASs per Columns gzip gap parser bzip go
Config Column SG BL-CM BL-CM BL-CM BL-CM BL-CM

IPC IPC IPC IPC IPC
s4a4c4 4 4 4 2.3 2.4 1.8 1.9 1.7
s8a4c4 8 4 4 2.8 3.5 2.4 2.5 2.4
s8a4c8 8 4 8 2.9 3.9 2.5 2.7 2.5
s8a8c8 8 8 8 4.1 4.4 2.7 2.9 2.7
s16a8c4 16 8 4 3.1 3.9 2.5 2.6 2.5
s8a4c16 8 4 16 3.1 4.2 2.5 2.5 2.5

Levo machine configurations and BL-CM IPC values for the 5 benchmarks.
s = SGs per column, a = ASs per SG and c = Columns.
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Speedups vs. Config. & Machine Type
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Summary

� :
� New execution core
� Novel techniques for scalability with low cycle time
� Time-Tags & Resource Flow Execution are wins
� High-IPC, & more there:

� D-CM with branch oracle: about 50% more IPC

� Conventional memory IPC close to perfect memory
� D-paths quite effective at improving performance
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Relevant Web Sites

Levo links:
www.ele.uri.edu/~uht

Or: www.levo.org

Levo visualization (direct):
ovel.ele.uri.edu:8080

http://www.ele.uri.edu/~uht
http://www.ele.uri.edu/~uht
http://www.levo.org/
http://www.levo.org/
http://ovel.ele.uri.edu:8080/
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