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Closely Related Work
• Riseman & Foster (1972), Lam & Wilson (1992) and 

others (unconstrained resources): 
much ILP in General Purpose code:  > x100

• But:  little IPC realized in real machines:  ~ 1-2
• Segmented IQ’s – ISCA2002, etc.: don’t scale, etc.
• Tomasulo ’67 – elegant, but doesn’t scale
• Limited register lifetime – Sohi et al ’92

– One key to Levo scalability
• Warp machine – Cleary et al ’95 – time-tags

– Memory accesses only, only for control-flow, large tags
• TRIPS – Burger et al, UT Austin – ‘grid’: software needed
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Needs and   Solutions

1. Cheap and scalable dependency detection 
& operand linking 

time-tags (small): link & order operand usage.
2. Little cycle-time impact & scalability

constant length segmented or spanning buses
3. Simple execution algorithm

resource-flow execution: Instructions flow to 
PE’s, executed regardless of dependencies.

4. High IPC hardware predication & 
Disjoint Eager Execution (DEE) - smart multipath

5. Legacy code ISA independent, no compiler assist
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Floorplan: 8-4-8
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Time-Tags

• Small integers = position in E-window
• Enforce and minimize dependencies
• Provide operand linking (sink-to-source)
• Basic problem:

– R3 must wind up with closest previous value of R4 (2)
– Must be independent of execution order of instructions

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9
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Active Station (AS)
• LSTT (Last-Snarfed Time Tag) key for opnd. linking

LD
pathtime-tag

(LSTT) value AS
time-tag

=

address

=<= >!=

LD LD

execute or re-execute

tt addr value path tt

tt addr value

result operand forwarding bus 
(spanning bus) 

(Snoop: look at bus
Snarf: read off of bus)
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Time-Tag Example: Case 1

• Recall: R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1:      I 1 brdcsts. R4 address matches, 
TT(I 1) >= LSTT(I 9),
I 1 info snarfed: R3=1

Time – 2:                               I 5 brdcsts.    R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2
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Time-Tag Example: Case 2

• Recall: R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1:                               I 5 brdcsts.    R4 address matches, 
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Time – 2:      I 1 brdcsts.                             R4 address matches,
TT(I 1) < LSTT(I 9),
I 1 info not snarfed.
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Resource-Flow Execution

What it is:
Execute everything, then clean up. 

(Example of this: in prior TT example, if: I1, I5, I9 
all execute in first cycle, then either Case 1 or 2.)

Or, more precisely:
Execute any instruction regardless of the presence 

of its operands or predicates, 
resources permitting, then apply programmatic 

constraints to obtain correct execution.
~33% performance gain.
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Experimental Methodology

• Trace-driven simulator used: 
– 100 million instruction warm-up, then:
– 500 million instruction execution and data gathering

• MIPS-1 ISA binaries executed
• SPECint95: compress, go, ijpeg

SPECInt2000: bzip2, crafty, gcc, gzip, mcf,
parser, vortex – 10 benchmarks, total

• Point of comparison: SimpleScalar –
– w/ 32-way instruction issue (physically unrealizable)
– Harmonic-mean IPC = 1.96
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Experimental Method. (cont.)

Parameter Default Value
L1 D,I-caches separate, 64 KB, 1 cycle latency
L2 cache: unified, 2 MB, 10 cycle latency
Main memory: 100 cycle latency, no misses
Spanning bus delay 1 cycle  (if no contention)
Spanning bus length 8 SG’s (constant)
Forwarding Unit delay 1 cycle  (if no contention)
Buses per RFU and per M(emory)FU 2 input and 2 output
Buses per P(redicate)FU 1 input and 1 output
M-path to D-path switch time 1 cycle (+ re-broadcast of data)
Columns per D-path 1 column
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Real & Ideal Performance
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Summary

• :
– New execution core
– Novel techniques for scalability with low cycle time
– Time-Tags, Active Stations, Segmented Buses

& Resource Flow Execution are wins
– High-IPC, & more there:

• With better I-Fetch: much more IPC
• With better data value prediction: much more IPC?
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Some Future Work

• Try different form of value prediction:
– Distributed throughout execution window
– Put into Forwarding Units
– Utilize local characteristics
– Possibly utilize some global characteristics

• Better value prediction
• Possibly 2-3x better ILP (Gonzalez et al)

– 2-3x better IPC ?
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