\

1\
A Scalable Processor With High IPC
Augustus K. Uht Alireza Khalafi
Dept. of Electrical and David Morano
Computer Engineering David Kaeli
&: Dept. of Electrical and
' Computer Engineering
i I — SNortheastern
UNIVERSITY OF I— —_ i,
Rhode Island Univessity of Rhode Iiland mm
Copyright © 2003, A. K. Uht, et al.
Patents applied for.)

Acknowledgements

Work supported In present or past by:

e U.S. National Science Foundation
o URI Office of the Provost

e Intel

* Mentor Graphics

o Xilinx

2 of 18

Outline

© 0 NOo ok whE

Closely Related Work

Needs and LEWF@ Solutions

High-Level Architecture and Microarchitecture
Floorplan

Time-Tags and Active Stations, w/ Example
Resource-Flow Execution

Experiments

Summary

Some Future Work

3 0f 18

Closely Related Work

Riseman & Foster (1972), Lam & Wilson (1992) and
others (unconstrained resources):
much ILP in General Purpose code: > x100

But: little IPC realized in real machines: ~ 1-2
Segmented 1Q’s — ISCA2002, etc.: don’t scale, etc.
Tomasulo ’67 — elegant, but doesn’t scale

Limited register lifetime — Sohi et al 92
— One key to Levo scalability
Warp machine — Cleary et al ’95 — time-tags
— Memory accesses only, only for control-flow, large tags
TRIPS — Burger et al, UT Austin — “‘grid’: software needed
LEvo

4 of 18

Needs and LERF® Solutions

Cheap and scalable dependency detection
& operand linking

- time-tags (small): link & order operand usage.

Little cycle-time impact & scalability
—> constant length segmented or spanning buses

Simple execution algorithm
-> resource-flow execution: Instructions flow to
PE’s, executed regardless of dependencies.

High IPC - hardware predication &
Disjoint Eager Execution (DEE) - smart multipath

_egacy code - ISA independent, no compiler assist
SEAE)

50f 18

Temporally

Earliest n X m Execution Instruction
Instruc\tlon Window Window

memory
loads ™

NEAE)
High-
Level

Archi-

.
. -
B
.
N
.
.

tecture

Active F le
D- . Station | e ! -
c| (holds 1 B R
a | Instruc- Colel 3
C . tion) ! h ! c
h | I | h
€ €
—

Commit Temporall (Unified L2 Cache

- memory stores Lgtest y and Main Memory

) not shown.)
Instruction

Processing Elements (PEs) are distributed among AS’s.

HE 4

(Execution
Window)

*No central
register file:
Reg. Fwd.
Units used

*No reorder
buffer

*SG: Sharing
Group

Column

I-1

from prior column

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

A B

Column

from prior column

>

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

Column i+1

from prior column

>

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

k— Distance for 1 cycle w/ f=8.7 GHz

Column (No. 0)

LE&F® Floorplan: 8-4-8

(SG/Column - AS/SG - # Columns)

I
Column (No. Q) — | [K-----
g (No.0) kCO|.1
Sharing
Group
\\
FPU | FPU | FPU | FPU | FPU | FPU | FPU FPU
IEU | IEU | IEU | IEU | IEU | IEU | IEU IEU
AS
 Col. 1
I
R
|
|
I_)_/_/_
Forwarding Units/LO - Col. 7 Col. 6

N

B - PE for Sharing Group

[] - 8 Active Stations of Sharing Group
B - Forwarding Units, Col. 0

B - L1 Caches (copies), Col. 0

" — Partial expanded view

N

N
N

. Overall chip:

AN % Unified L2 Cache
Col. Col. Col. Col.
0 1 2 3
T = — —
< — <~ <«
Phd /Col. Col. Col. Col.
Phe 7 6 5 4

% Unified L2 Cache

Time-Tags

« Small integers = position in E-window
* Enforce and minimize dependencies
* Provide operand linking (sink-to-source)

e Basic problem:

— R3 must wind up with closest previous value of R4 (2)
— Must be independent of execution order of instructions

nominal time order

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

9 of 18

Active Station (AS)

st o LSTT (Last-Snarfed Time Tag) key for opnd. linking

result operand forwarding bus (Snoop: look at bus
(spanning bus) Snarf: read off of bus)
tt addr value
time-tag AS
st _LDaddress i value path time-tag

tt addr value path tt

_}execute or re-execute

10 of 18

Time-Tag Example: Case 1

* Recall: R3 € closest previous value of R4 (2)

nominal time order
} >

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time — 1: | 1 brdcsts. R4 address matches,
TT(1)>=LSTT(l9),
| 1 info snarfed: R3=1

Time — 2: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(l9),
| 5 info snarfed: R3=2

11 of 18

Time-Tag Example: Case 2

* Recall: R3 € closest previous value of R4 (2)

nominal time order

. : : >
Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(19),
| 5 info snarfed: R3=2

Time — 2: | 1 brdcsts. R4 address matches,
TT(1) <LSTT(l9),
| 1 info not snarfed.

12 of 18

Resource-Flow Execution

What It Is:

Execute everything, then clean up.

(Example of this: in prior TT example, If: 11, 15, 19
all execute In first cycle, then either Case 1 or 2.)

Or, more precisely:
Execute any Instruction regardless of the presence
of its operands or predicates,
resources permitting, then apply programmatic
constraints to obtain correct execution.
~33% performance gain.

LLRI Road Show, Spring 2003 | VO

13 of 18

Experimental Methodology

Trace-driven simulator used:
— 100 million instruction warm-up, then:
— 500 million instruction execution and data gathering

MIPS-1 ISA binaries executed

SPECInt95: compress, go, Ijpeg
SPECInt2000: bzip2, crafty, gcc, gzip, mcf,
parser, vortex — 10 benchmarks, total

Point of comparison: SimpleScalar -
— w/ 32-way Instruction issue (physically unrealizable)
— Harmonic-mean IPC = 1.96

14 of 18

University of Rhode Island

Experimental Method. (cont.)

Parameter Default VValue
L1 D,l-caches separate, 64 KB, 1 cycle latency
L2 cache: unified, 2 MB, 10 cycle latency
Main memory: 100 cycle latency, no misses
Spanning bus delay 1 cycle (if no contention)
Spanning bus length 8 SG’s (constant)
Forwarding Unit delay 1 cycle (if no contention)
Buses per RFU and per M(emory)FU 2 input and 2 output
Buses per P(redicate)FU 1 input and 1 output
M-path to D-path switch time 1 cycle (+ re-broadcast of data)

Columns per D-path 1 column

15 of 18

Real & ldeal Performance

Microarc hitecture Research Institute
University of Rhode Island

Harmonic Mean

25

M Ideal Fetch /
Ideal Memory

M Ideal Fetch/
Real Memory

[0 Real Fetch/
Ideal Memory

[Real Fetch /
Real Memory

IPC

8-4-8 8-8-8 16-8-8 32-8-8 » 6.5, w/ better
cometry: SG/Col - AS/SG. . Cols I-Fetch

Geometry: SG/Col - AS/SG - Cols
LLRI Road Show, Spring 2003 | VO

16 of 18

Summary

— New execution core
— Novel techniques for scalability with low cycle time

— Time-Tags, Active Stations, Segmented Buses
& Resource Flow Execution are wins
— High-IPC, & more there:

o With better I-Fetch: much more IPC
 With better data value prediction: much more IPC?

17 of 18

Some Future Work

o Try different form of value prediction:
— Distributed throughout execution window
— Put into Forwarding Units
— Utilize local characteristics
— Possibly utilize some global characteristics

e —> Better value prediction

» Possibly 2-3x better ILP (Gonzalez et al)
— 2-3X better IPC ?

18 of 18

\

1\
A Scalable Processor With High IPC
Augustus K. Uht Alireza Khalafi
Dept. of Electrical and David Morano
Computer Engineering David Kaeli
&: Dept. of Electrical and
' Computer Engineering
i I — SNortheastern
UNIVERSITY OF I— —_ i,
Rhode Island Univessity of Rhode Iiland mm
Copyright © 2003, A. K. Uht, et al.
Patents applied for.)

	A Scalable Processor With High IPC
	Acknowledgements
	Outline
	Closely Related Work
	Needs and Solutions
	High-LevelArchi-tecture
	Micro-archi-tecture
	Floorplan: 8-4-8(SG/Column - AS/SG - # Columns)
	Time-Tags
	Active Station (AS)
	Time-Tag Example: Case 1
	Time-Tag Example: Case 2
	Resource-Flow Execution
	Experimental Methodology
	Experimental Method. (cont.)
	Real & Ideal Performance
	Summary
	Some Future Work
	A Scalable Processor With High IPC

