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Closely Related Work

Riseman & Foster (1972), Lam & Wilson (1992) and
others (unconstrained resources):
much ILP in General Purpose code: > x100

But: little IPC realized in real machines: ~ 1-2
Segmented 1Q’s — ISCA2002, etc.: don’t scale, etc.
Tomasulo ’67 — elegant, but doesn’t scale

Limited register lifetime — Sohi et al 92
— One key to Levo scalability
Warp machine — Cleary et al ’95 — time-tags
— Memory accesses only, only for control-flow, large tags
TRIPS — Burger et al, UT Austin — “‘grid’: software needed
LEvo
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Needs and LERF® Solutions

Cheap and scalable dependency detection
& operand linking

- time-tags (small): link & order operand usage.

Little cycle-time impact & scalability
—> constant length segmented or spanning buses

Simple execution algorithm
-> resource-flow execution: Instructions flow to
PE’s, executed regardless of dependencies.

High IPC - hardware predication &
Disjoint Eager Execution (DEE) - smart multipath

_egacy code - ISA independent, no compiler assist
SEAE)
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Time-Tags

« Small integers = position in E-window
* Enforce and minimize dependencies
* Provide operand linking (sink-to-source)

e Basic problem:

— R3 must wind up with closest previous value of R4 (2)
— Must be independent of execution order of instructions

nominal time order

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

9 of 18



Active Station (AS)

st o LSTT (Last-Snarfed Time Tag) key for opnd. linking

result operand forwarding bus (Snoop: look at bus
(spanning bus) Snarf: read off of bus)
tt addr value
time-tag AS
st _LDaddress i value path time-tag

tt addr value path tt

_}execute or re-execute
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Time-Tag Example: Case 1

* Recall: R3 € closest previous value of R4 (2)

nominal time order
} >

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time — 1: | 1 brdcsts. R4 address matches,
TT(1)>=LSTT(l9),
| 1 info snarfed: R3=1

Time — 2: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(l9),
| 5 info snarfed: R3=2
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Time-Tag Example: Case 2

* Recall: R3 € closest previous value of R4 (2)

nominal time order

. : : >
Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(19),
| 5 info snarfed: R3=2

Time — 2: | 1 brdcsts. R4 address matches,
TT( 1) <LSTT(l9),
| 1 info not snarfed.

12 of 18



Resource-Flow Execution

What It Is:

Execute everything, then clean up.

(Example of this: in prior TT example, If: 11, 15, 19
all execute In first cycle, then either Case 1 or 2.)

Or, more precisely:
Execute any Instruction regardless of the presence
of its operands or predicates,
resources permitting, then apply programmatic
constraints to obtain correct execution.
~33% performance gain.

LLRI Road Show, Spring 2003 | VO
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Experimental Methodology

Trace-driven simulator used:
— 100 million instruction warm-up, then:
— 500 million instruction execution and data gathering

MIPS-1 ISA binaries executed

SPECInt95: compress, go, Ijpeg
SPECInt2000: bzip2, crafty, gcc, gzip, mcf,
parser, vortex — 10 benchmarks, total

Point of comparison: SimpleScalar -
— w/ 32-way Instruction issue (physically unrealizable)
— Harmonic-mean IPC = 1.96
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University of Rhode Island

Experimental Method. (cont.)

Parameter Default VValue
L1 D,l-caches separate, 64 KB, 1 cycle latency
L2 cache: unified, 2 MB, 10 cycle latency
Main memory: 100 cycle latency, no misses
Spanning bus delay 1 cycle (if no contention)
Spanning bus length 8 SG’s (constant)
Forwarding Unit delay 1 cycle (if no contention)
Buses per RFU and per M(emory)FU 2 input and 2 output
Buses per P(redicate)FU 1 input and 1 output
M-path to D-path switch time 1 cycle (+ re-broadcast of data)

Columns per D-path 1 column
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Real & ldeal Performance

Microarc hitecture Research Institute
University of Rhode Island
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Summary

— New execution core
— Novel techniques for scalability with low cycle time

— Time-Tags, Active Stations, Segmented Buses
& Resource Flow Execution are wins
— High-IPC, & more there:

o With better I-Fetch: much more IPC
 With better data value prediction: much more IPC?
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Some Future Work

o Try different form of value prediction:
— Distributed throughout execution window
— Put into Forwarding Units
— Utilize local characteristics
— Possibly utilize some global characteristics

e —> Better value prediction

» Possibly 2-3x better ILP (Gonzalez et al)
— 2-3X better IPC ?
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