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Derivation

e From: * ” —winged fingers
— Flying dinosaur

» Teradactyl: ‘Flying’ Supercomputer
— Many “fingers’
— Each “finger’ (processing element) flies
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THE Supercomputing Problem

« PROGRAMMABILITY!
 Why? Here’s why:
1. Scientific programs by users take years to write

— Even with libraries

“...the manual development and testing of a reasonably
efficient parallel code for a computational model ...
typically takes months to years for a computational

chemist.” (Our emphases.), Supercomputing 2002

— Parallel programming, scheduling, etc. way too hard

2. Users’ time Is greatly misspent:
chemists should be doing Chemistry, not coding
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Our Approach to a Solution

1. Use hardware to do the hard stuff

2. Let the user use an easy programming model:
- Standard sequential (Imperative) model

3. WHY is parallel programming so hard?
- don’t know where the data dependencies are

4. Approach has always been to estimate them
Don’t estimate them, know them

6. Use resource-flow execution:

e Instructions flow to PE’s,
are executed regardless of dependencies

 Then clean up: enforce dependencies when they’re known

o1
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Time-Tags

« Small integers = position in E-window
* Enforce and minimize dependencies
* Provide operand linking (sink-to-source)

e Basic problem:

— R3 must wind up with closest previous value of R4 (2)
— Must be independent of execution order of instructions

nominal time order

>

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9
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Time-Tag Example: Case 1

o LSTT: Last Snarfed Time-Tag

nominal time order
} >

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 1 brdcsts. R4 address matches,
TT(1)>=LSTT(l9),
| 1 info snarfed: R3=1

Time — 2: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(9),
| 5 info snarfed: R3=2
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Time-Tag Example: Case 2

* Recall: R3 € closest previous value of R4 (2)

nominal time order

. : : >
Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(19),
| 5 info snarfed: R3=2

Time — 2: | 1 brdcsts. R4 address matches,
TT( 1) <LSTT(l9),
| 1 info not snarfed.
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Teradactyl
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Teradactyl

Example

latest
Processor/
Memory Unit
(PMU)
(#14)

committed
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PMU

Before: ‘“+’ (#6) wait for ‘x’ (#0); manual
After: “+’ (#6) || ‘X’ (#0); & auto-schedule

store forwarding;
program forwarding

load requests
load datum

return

instructions;
load data



Teradactyl Characteristics

 Scalable to thousands of processors
o Uses modified LEW@ model:

— Processor Memory Units like Levo columns
« Augment time-tags with PMU # as a prefix

— Whole Teradactyl like Levo Execution Window
« Once data computed, Is sent around ring,
to update dependent operands:

—> close to best performance possible
(=> with speculation, maybe better)
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Teradactyl Performance

 First: Talking about SUSTAINED performance

e Now, assume:
— PMU (Levo) up to 10 IPC within several years
— Chip clock frequency up to 5 GHz = 50 Gops
— Then for TeraOp: ~25 PMU’s (some inefficiency)
— And for

e Power, etc.: ~ same as other supercomputers

o Other supercomputers: ~< 1 TeraOp, sustained
— With 100’s or 1000’s of processors

Teradactyl 16 of 17



Summary

* Problem: Programmability

 Solution: Teradactyl:
— Based on resource-flow execution
— Data dependencies known exactly, at run-time
— Data speculation also used to improve performance
— Scalable
— “Easy” to program (well, as easy as it can be :-)

e The future: Petadactyl
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