Teradactyl:

An Easy-to-Use Supercomputer

Augustus K. Uht
Dept. of Electrical and Computer Engineering

UNIVERSITY OF

Rhode Island

Copyright © 2004, A. K. Uht, et al.
Patents applied for.

Microarchitecture Research Institute
University of Rhode Island

SSCCII 2004: January 30

%

Derivation

e From: * ” —winged fingers
— Flying dinosaur

» Teradactyl: ‘Flying’ Supercomputer
— Many “fingers’
— Each “finger’ (processing element) flies

Teradactyl 2 of 17

Acknowledgement

Work supported in present, past and future by:
 Laurette Bradley, my wife.

SSCCII 2004: January 30 | Teradactyl 3 of 17

Outline

L T i e

The Problem

Our Approach to a Solution
Resource-Flow Execution

Basic LEW® Microarchitecture
Teradactyl Architecture
Summary

Teradactyl

4 of 17

= nstitute
i Rhode Island

THE Supercomputing Problem

« PROGRAMMABILITY!
 Why? Here’s why:
1. Scientific programs by users take years to write

— Even with libraries

“...the manual development and testing of a reasonably
efficient parallel code for a computational model ...
typically takes months to years for a computational

chemist.” (Our emphases.), Supercomputing 2002

— Parallel programming, scheduling, etc. way too hard

2. Users’ time Is greatly misspent:
chemists should be doing Chemistry, not coding

SSCCII 2004: January 30 | Teradactyl £ of 17

Our Approach to a Solution

1. Use hardware to do the hard stuff

2. Let the user use an easy programming model:
- Standard sequential (Imperative) model

3. WHY is parallel programming so hard?
- don’t know where the data dependencies are

4. Approach has always been to estimate them
Don’t estimate them, know them

6. Use resource-flow execution:

e Instructions flow to PE’s,
are executed regardless of dependencies

 Then clean up: enforce dependencies when they’re known

o1

Teradactyl 6 of 17

Temporally

Earliest n X m Execution Instruction
Instruc\tlon Window Window

memory
loads ™

NEAE)
High-
Level

Archi-

.
. -
B
.
N
.
.

tecture

Active F le
D- . Station | e ! -
c| (holds 1 B R
a | Instruc- Colel 3
C . tion) ! h ! c
h | I | h
€ €
—

Commit Temporall (Unified L2 Cache

- memory stores Lgtest y and Main Memory

) not shown.)
Instruction

Processing Elements (PEs) are distributed among AS’s.

BE 4

(Execution
Window)

SG: Sharing
Group

Column

I-1

from prior column

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

Column

from prior column

>

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

Column i+1

from prior column

>

Y SG

FU AS

AS

ﬂPE

< AS

A4

AS

SG
|I% AS| |AS

< PE

AS

AS

Y SG

AS

AS

AS

U
<
> PE
>
>

AS

to next column

Time-Tags

« Small integers = position in E-window
* Enforce and minimize dependencies
* Provide operand linking (sink-to-source)

e Basic problem:

— R3 must wind up with closest previous value of R4 (2)
— Must be independent of execution order of instructions

nominal time order

>

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Teradactyl 9 of 17

Time-Tag Example: Case 1

o LSTT: Last Snarfed Time-Tag

nominal time order
} >

Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 1 brdcsts. R4 address matches,
TT(1)>=LSTT(l9),
| 1 info snarfed: R3=1

Time — 2: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(9),
| 5 info snarfed: R3=2
SSCCII 2004: January 30 || Teradactyl 10 of 17

Time-Tag Example: Case 2

* Recall: R3 € closest previous value of R4 (2)

nominal time order

. : : >
Instructions: R4 =1 R4 =2 R3 =R4
| 1 | 5 | 9

Time —1: | 5 brdcsts. R4 address matches,
TT(5)>=LSTT(19),
| 5 info snarfed: R3=2

Time — 2: | 1 brdcsts. R4 address matches,
TT(1) <LSTT(l9),
| 1 info not snarfed.

Teradactyl 11 of 17

Microarc hitecture Research Institute
University of Rhode Island

LBF/O Performance

On
hard
code:

SPECInt

Harmonic Mean

IPC

On

easy
code:

M Ideal Fetch /
Ideal Memory

M Ideal Fetch/
Real Memory

[0 Real Fetch/
Ideal Memory

[Real Fetch /
Real Memory

8-8-8

8-4-8

27

Geometry: SG/Col - AS/SG - Cols
SSCCII 2004: January 30 | Teradactyl

» 6.5, w/ better
16-8-8 32-8-8

|-Fetch

12 of 17

Teradactyl

latest
Processor/
Memory Unit

store forwarding;
program forwarding

earliest load requests
(PMU) R S load datum
(#14) (#0) return
committed instructions;

store data load data

Teradactyl

Example

latest
Processor/
Memory Unit
(PMU)
(#14)

committed
store data

earliest
PMU

Before: ‘“+’ (#6) wait for ‘x’ (#0); manual
After: “+’ (#6) || ‘X’ (#0); & auto-schedule

store forwarding;
program forwarding

load requests
load datum

return

instructions;
load data

Teradactyl Characteristics

 Scalable to thousands of processors
o Uses modified LEW@ model:

— Processor Memory Units like Levo columns
« Augment time-tags with PMU # as a prefix

— Whole Teradactyl like Levo Execution Window
« Once data computed, Is sent around ring,
to update dependent operands:

—> close to best performance possible
(=> with speculation, maybe better)

Teradactyl 15 of 17

Teradactyl Performance

 First: Talking about SUSTAINED performance

e Now, assume:
— PMU (Levo) up to 10 IPC within several years
— Chip clock frequency up to 5 GHz = 50 Gops
— Then for TeraOp: ~25 PMU’s (some inefficiency)
— And for

e Power, etc.: ~ same as other supercomputers

o Other supercomputers: ~< 1 TeraOp, sustained
— With 100’s or 1000’s of processors

Teradactyl 16 of 17

Summary

* Problem: Programmability

 Solution: Teradactyl:
— Based on resource-flow execution
— Data dependencies known exactly, at run-time
— Data speculation also used to improve performance
— Scalable
— “Easy” to program (well, as easy as it can be :-)

e The future: Petadactyl

Teradactyl 17 of 17

Teradactyl:

An Easy-to-Use Supercomputer

Augustus K. Uht
Dept. of Electrical and Computer Engineering

UNIVERSITY OF

Rhode Island

Copyright © 2004, A. K. Uht, et al.
Patents applied for.

Microarchitecture Research Institute
University of Rhode Island

SSCCII 2004: January 30

%

	Teradactyl:An Easy-to-Use Supercomputer
	Derivation
	Acknowledgement
	Outline
	THE Supercomputing Problem
	Our Approach to a Solution
	High-LevelArchi-tecture
	Micro-archi-tecture
	Time-Tags
	Time-Tag Example: Case 1
	Time-Tag Example: Case 2
	Performance
	Teradactyl
	Teradactyl
	Teradactyl Characteristics
	Teradactyl Performance
	Summary
	Teradactyl:An Easy-to-Use Supercomputer

