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Derivation

• From: “Pterodactyl” – winged fingers
– Flying dinosaur

• Teradactyl: ‘Flying’ Supercomputer
– Many ‘fingers’
– Each ‘finger’ (processing element) flies
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Outline

1. The Problem
2. Our Approach to a Solution
3. Resource-Flow Execution
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THE Supercomputing Problem

• PROGRAMMABILITY!!!
• Why? Here’s why:

1. Scientific programs by users take years to write
– Even with libraries

“…the manual development and testing of a reasonably 
efficient parallel code for a computational model … 
typically takes months to years for a computational 
chemist.” (Our emphases.), Supercomputing 2002

– Parallel programming, scheduling, etc. way too hard
2. Users’ time is greatly misspent:

chemists should be doing Chemistry, not coding
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Our Approach to a Solution

1. Use hardware to do the hard stuff
2. Let the user use an easy programming model:

Standard sequential (imperative) model
3. WHY is parallel programming so hard?

don’t know where the data dependencies are
4. Approach has always been to estimate them
5. Don’t estimate them, know them
6. Use resource-flow execution:

• Instructions flow to PE’s, 
are executed regardless of dependencies

• Then clean up: enforce dependencies when they’re known
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Time-Tags

• Small integers = position in E-window
• Enforce and minimize dependencies
• Provide operand linking (sink-to-source)
• Basic problem:

– R3 must wind up with closest previous value of R4 (2)
– Must be independent of execution order of instructions

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9
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Time-Tag Example: Case 1

• LSTT: Last Snarfed Time-Tag

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1:      I 1 brdcsts. R4 address matches, 
TT(I 1) >= LSTT(I 9),
I 1 info snarfed: R3=1

Time – 2:                               I 5 brdcsts.    R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2
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Time-Tag Example: Case 2

• Recall: R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1:                               I 5 brdcsts.    R4 address matches, 
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Time – 2:      I 1 brdcsts.                             R4 address matches,
TT(I 1) < LSTT(I 9),
I 1 info not snarfed.
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Performance

Harmonic Mean

0

5

10

15

20

25

8 - 4 - 8 8 - 8 - 8 16 - 8 - 8 32 - 8 - 8
Geometry: SG/Col - AS/SG - Cols

IP
C

Ideal Fetch /
Ideal Memory
Ideal Fetch /
Real Memory
Real Fetch /
Ideal Memory
Real Fetch /
Real Memory

6.5, w/ better
I-Fetch

On 
hard 
code: 

SPECInt

On 
easy
code:

??



Teradactyl



Teradactyl Before: ‘+’ (#6) wait for ‘x’ (#0); manual
After: ‘+’ (#6) || ‘x’ (#0); &  auto-schedule(A x B) + C

Example

#6

#0
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Teradactyl Characteristics

• Scalable to thousands of processors
• Uses modified                  model:

– Processor Memory Units like Levo columns
• Augment time-tags with PMU # as a prefix

– Whole Teradactyl like Levo Execution Window
• Once data computed, is sent around ring,

to update dependent operands:
close to best performance possible

( with speculation, maybe better)
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Teradactyl Performance

• First: Talking about SUSTAINED performance
• Now, assume:

– PMU (Levo) up to 10 IPC within several years
– Chip clock frequency up to 5 GHz 50 Gops
– Then for TeraOp: ~25 PMU’s (some inefficiency)
– And for PetaOp: 25,000 PMU’s

• Power, etc.:  ~ same as other supercomputers
• Other supercomputers: ~< 1 TeraOp, sustained

– With 100’s or 1000’s of processors
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Summary

• Problem: Programmability
• Solution: Teradactyl:

– Based on resource-flow execution
– Data dependencies known exactly, at run-time
– Data speculation also used to improve performance
– Scalable
– “Easy” to program (well, as easy as it can be :-)

• The future: Petadactyl
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