
Teradactyl:
An Easy-to-Use Supercomputer

Augustus K. Uht
Dept. of Electrical and Computer Engineering

SSCCII 2004: January 30Copyright © 2004, A. K. Uht, et al.
Patents applied for.

2 of 17SSCCII 2004: January 30 Teradactyl

Derivation

• From: “Pterodactyl” – winged fingers
– Flying dinosaur

• Teradactyl: ‘Flying’ Supercomputer
– Many ‘fingers’
– Each ‘finger’ (processing element) flies

3 of 17SSCCII 2004: January 30 Teradactyl

Acknowledgement

Work supported in present, past and future by:
• Laurette Bradley, my wife.

4 of 17SSCCII 2004: January 30 Teradactyl

Outline

1. The Problem
2. Our Approach to a Solution
3. Resource-Flow Execution
4. Basic Microarchitecture
5. Teradactyl Architecture
6. Summary

5 of 17SSCCII 2004: January 30 Teradactyl

THE Supercomputing Problem

• PROGRAMMABILITY!!!
• Why? Here’s why:

1. Scientific programs by users take years to write
– Even with libraries

“…the manual development and testing of a reasonably
efficient parallel code for a computational model …
typically takes months to years for a computational
chemist.” (Our emphases.), Supercomputing 2002

– Parallel programming, scheduling, etc. way too hard
2. Users’ time is greatly misspent:

chemists should be doing Chemistry, not coding

6 of 17SSCCII 2004: January 30 Teradactyl

Our Approach to a Solution

1. Use hardware to do the hard stuff
2. Let the user use an easy programming model:

Standard sequential (imperative) model
3. WHY is parallel programming so hard?

don’t know where the data dependencies are
4. Approach has always been to estimate them
5. Don’t estimate them, know them
6. Use resource-flow execution:

• Instructions flow to PE’s,
are executed regardless of dependencies

• Then clean up: enforce dependencies when they’re known

C
o
l
u
m
n

0

C
o
l
u
m
n

1

C
o
l
u
m
n

2

C
o
l
u
m
n

m-1

L1

D-
C
a
c
h
e

L1

I-
C
a
c
h
e

Commit
- memory stores

Temporally
Earliest

Instruction

Temporally
Latest

Instruction

AS

Active
Station
(holds 1
Instruc-

tion)
[0, 2]

n X m Execution
Window

I-
F
e
t
c
h

Instruction
Window

(Unified L2 Cache
and Main Memory

not shown.)

Processing Elements (PEs) are distributed among AS’s.

memory
loads

High-
Level
Archi-
tecture

7

Column i Column i+1

Micro-
archi-
tecture

Column i-1
from prior column from prior column from prior column

AS
PE

AS AS

AS
SG

FU

FU

FU

AS
PE

AS AS

AS
SG

AS
PE

AS AS

AS
SG

to next column

AS
PE

AS AS

AS
SG

FU

FU

FU

AS
PE

AS AS

AS
SG

AS
PE

AS AS

AS
SG

to next column

SG: Sharing
Group

8

AS
PE

AS AS

AS
SG

FU

FU

FU

AS
PE

AS AS

AS
SG

AS
PE

AS AS

AS
SG

to next column

(Execution
Window)

9 of 17SSCCII 2004: January 30 Teradactyl

Time-Tags

• Small integers = position in E-window
• Enforce and minimize dependencies
• Provide operand linking (sink-to-source)
• Basic problem:

– R3 must wind up with closest previous value of R4 (2)
– Must be independent of execution order of instructions

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

10 of 17SSCCII 2004: January 30 Teradactyl

Time-Tag Example: Case 1

• LSTT: Last Snarfed Time-Tag

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1: I 1 brdcsts. R4 address matches,
TT(I 1) >= LSTT(I 9),
I 1 info snarfed: R3=1

Time – 2: I 5 brdcsts. R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

11 of 17SSCCII 2004: January 30 Teradactyl

Time-Tag Example: Case 2

• Recall: R3 closest previous value of R4 (2)

R4 = 1 R4 = 2 R3 = R4

nominal time order
Instructions:

I 1 I 5 I 9

Time – 1: I 5 brdcsts. R4 address matches,
TT(I 5) >= LSTT(I 9),
I 5 info snarfed: R3=2

Time – 2: I 1 brdcsts. R4 address matches,
TT(I 1) < LSTT(I 9),
I 1 info not snarfed.

12 of 17SSCCII 2004: January 30 Teradactyl

Performance

Harmonic Mean

0

5

10

15

20

25

8 - 4 - 8 8 - 8 - 8 16 - 8 - 8 32 - 8 - 8
Geometry: SG/Col - AS/SG - Cols

IP
C

Ideal Fetch /
Ideal Memory
Ideal Fetch /
Real Memory
Real Fetch /
Ideal Memory
Real Fetch /
Real Memory

6.5, w/ better
I-Fetch

On
hard
code:

SPECInt

On
easy
code:

??

Teradactyl

Teradactyl Before: ‘+’ (#6) wait for ‘x’ (#0); manual
After: ‘+’ (#6) || ‘x’ (#0); & auto-schedule(A x B) + C

Example

#6

#0

15 of 17SSCCII 2004: January 30 Teradactyl

Teradactyl Characteristics

• Scalable to thousands of processors
• Uses modified model:

– Processor Memory Units like Levo columns
• Augment time-tags with PMU # as a prefix

– Whole Teradactyl like Levo Execution Window
• Once data computed, is sent around ring,

to update dependent operands:
close to best performance possible

(with speculation, maybe better)

16 of 17SSCCII 2004: January 30 Teradactyl

Teradactyl Performance

• First: Talking about SUSTAINED performance
• Now, assume:

– PMU (Levo) up to 10 IPC within several years
– Chip clock frequency up to 5 GHz 50 Gops
– Then for TeraOp: ~25 PMU’s (some inefficiency)
– And for PetaOp: 25,000 PMU’s

• Power, etc.: ~ same as other supercomputers
• Other supercomputers: ~< 1 TeraOp, sustained

– With 100’s or 1000’s of processors

17 of 17SSCCII 2004: January 30 Teradactyl

Summary

• Problem: Programmability
• Solution: Teradactyl:

– Based on resource-flow execution
– Data dependencies known exactly, at run-time
– Data speculation also used to improve performance
– Scalable
– “Easy” to program (well, as easy as it can be :-)

• The future: Petadactyl

Teradactyl:
An Easy-to-Use Supercomputer

Augustus K. Uht
Dept. of Electrical and Computer Engineering

SSCCII 2004: January 30Copyright © 2004, A. K. Uht, et al.
Patents applied for.

	Teradactyl:An Easy-to-Use Supercomputer
	Derivation
	Acknowledgement
	Outline
	THE Supercomputing Problem
	Our Approach to a Solution
	High-LevelArchi-tecture
	Micro-archi-tecture
	Time-Tags
	Time-Tag Example: Case 1
	Time-Tag Example: Case 2
	Performance
	Teradactyl
	Teradactyl
	Teradactyl Characteristics
	Teradactyl Performance
	Summary
	Teradactyl:An Easy-to-Use Supercomputer

