Disjoint Eager Execution: An Optimal Form of Speculative Execution

or: *ILP Speedups in the 10’s*

Augustus (Gus) K. Uht and Vijay Sindagi
Dept. of Elect. and Computer Engr.

UNIVERSITY OF RHODE ISLAND
“A 21st-century microprocessor may well [issue] up to dozens of instructions [per cycle, peak]...”

David A. Patterson, in:
Contributions of the Work

• New form of speculative execution (DEE)
 – Optimal, low cost, high performance:

 Speedup factors of 26-31 (2,600% - 3,100%)

• New machine model devised for DEE:
 \texttt{Levo} (target ILP: x 20)
 – On single chip in 4-5 years (by 2000 AD!)
Acknowledgements

• This work supported by the Intel Corp. through a grant from the Intel Research Council. Other support from URI and NSF.

• Other contributors to the work:
 – Sajee Somanathan
 – Sridhar Mahankali
Rest of Talk

• Background
 – ILP limits, Minimal control dependencies, Speculative execution methods

• *Disjoint Eager Execution (DEE)*
 – Theory
 – Heuristic
 – Performance evaluation

• The prototype: Levo
Background

• Oracle ILP speedups:
 – Riseman and Foster (1972), harmonic mean speedup \(S = 25 \);
 – Lam and Wilson (1992): \(S = 159 \); & others....

• w/ realistic constraints, only get: \(S = 2 \) to 3 (to date, using SPECint92’s)

• 50-100 million transistors/chip by 2000 AD

• Instruction set compatibility desirable
Minimal Control Dependencies
(Uht85, Ferrante87, Uht91)

• Classic model: *restrictive control dependencies*

• Can be relaxed: w/MCD, 3 & 4 ind. of 1

1. if (a<8) {
2. \hspace{1em} b=c+d;
}
3. x=y+z;
4. if (p>5) { ... }
Speculative Execution

- Given: l is depth of greatest speculation
- Single Path (SP) - $O(l)$ cost, but low performance: cumulative prob. (cp) $\rightarrow 0$
- Eager Execution (EE) - best performance, w/ infinite resources, but high cost: $O(2^l)$
- Need something better, with good features of both SP and EE:

 Disjoint Eager Execution (DEE)
SP and EE Models

Single Path
(l = 6)

Eager Execution
(l = 2)
DEE Theory

• *Branch Path* (resources) definition: dynamic code between branches (PE’s to execute the code in the path as concurrently as possible)

• Rule of Greatest Marginal Benefit:

 Assign resources to most likely paths, over all pending paths

• Optimal for constrained resources

• Cost: $O(kt^2)$; $k<1$
Assigning Resources
Comparison of SP, EE and DEE

Eager Execution
(l = 2)

Single Path
(l = 6)

Disjoint Eager Execution
(l = 4)
DEE in Practice

- Problem: hard to compute "true" cumulative probabilities dynamically
- Solution: DEE static tree heuristic:
 - Use average branch prediction accuracy (bpa or p) for all branches
 - Static tree shape determined as part of machine design
 - Resources are fixed to the static tree
 - Cost: still $O(kl^2)$; $k<1$
Typical Static Tree

Total number of branch paths is 34.

A number on a path is the overall probability of the path being executed.
DEE Performance Evaluation

• Method: pixie and modified dsim used
• Assumptions:
 – Unit latency
 – Dynamic Instruction Stream
 – MIPS R3000 instruction set
 – Practical version (heuristic) of DEE modelled
Harmonic Mean Summary

• 5 of 6 SPECint92 benchmarks used:
 • cc1
 • compress
 • eqntott
 • espresso
 • xlisp
 • <=100 million instructions each
• 2-bit saturating counter predictor (Smith81)
• “CD-MF” = “Minimal Control Dependencies”
• “DEE-CD-MF” is DEE with MCD; used in Levo 23
Oracle Speedup: 53.82

Harmonic Mean

Resources (branch paths)

Speedup (factor X sequential)
Comments on Results

• **Speedup factors of 26-31** demonstrated with limited resources and DEE-CD-MF
• Combination of DEE and minimal control dependencies is necessary
• Speedup of 20 potentially achievable with Levo
Levo

- Revised CONDEL-2 (Uht85, Uht92) + DEE
 - From CONDEL-2:
 - IQ: Instruction Queue: static instruction window
 - SSI: register and memory renaming registers
 - ISA: storage addresses, one per SSI
 - Implements: DEE-CD-MF
 - 1-to-1 correspondence with ML and DEE paths of static tree
a. - Broadcast bus for copying of ML state to DEE paths.
b. - Update bus for copying a DEE path state to ML path, upon a DEE branch resolving as mispredicted.

Note: a. and b. can be combined into a single bidirectional bus.
Summary

- **Disjoint Eager Execution (DEE):**
 - Optimal speculative execution
 - Realizes high ILP’s even with hard-to-predict-branch-intensive general-purpose code
 - Achieves 59% of oracle performance
 - Ideas useful elsewhere:
 - Multiprocessors
 - VLIW / software-based ILP machines