Disjoint Eager Execution: An Optimal Form of Speculative Execution or: ILP Speedups in the 10's

> Augustus (Gus) K. Uht and Vijay Sindagi Dept. of Elect. and Computer Engr.

UNIVERSITYOF RHODE ISLAND

Prologue

"A 21st-century microprocessor may well [issue] up to dozens of instructions [per cycle, peak]..."

David A. Patterson, in: "Microprocessors in [the year] 2020", Scientific American, September 1995.

Contributions of the Work

New form of speculative execution (DEE)
– Optimal, low cost, high performance:

Speedup factors of 26-31 (2,600% - 3,100%)

New machine model devised for DEE:
Levo (target ILP: x 20)
On single chip in 4-5 years (by 2000 AD!)

Acknowledgements

- This work supported by the Intel Corp. through a grant from the Intel Research Council. Other support from URI and NSF.
- Other contributors to the work:
 - Sajee Somanathan
 - Sridhar Mahankali

Rest of Talk

- Background
 - ILP limits, Minimal control dependencies, Speculative execution methods
- Disjoint Eager Execution (DEE)
 - Theory
 - Heuristic
 - Performance evaluation
- The prototype: Levo

Background

- Oracle ILP speedups:
 - Riseman and Foster (1972), harmonic mean speedup S = 25;
 - Lam and Wilson (1992): S = 159; & others....
- w/ realistic constraints, only get: S = 2 to 3 (to date, using SPECint92's)
- 50-100 million transistors/chip by 2000 AD
- Instruction set compatibility desirable

Minimal Control Dependencies (Uht85, Ferrante87, Uht91)

- Classic model: *restrictive control dependencies*
- Can be relaxed: w/MCD, 3 & 4 ind. of 1
 1. if (a<8) {
 - 2. b=c+d; }
 - 3. x=y+z;
 - 4. if (p>5) {...}

Speculative Execution

- Given: *l* is depth of greatest speculation
- Single Path (SP) O(*l*) cost, but low performance: *cumulative prob*. (cp) --> 0
- Eager Execution (EE) best performance,
 w/ infinite resources, but high cost: O(2^l)
- Need something better, with good features of <u>both</u> SP and EE:

Disjoint Eager Execution (DEE)

DEE Theory

- *Branch Path* (resources) definition: dynamic code between branches (PE's to execute the code in the path as concurrently as possible)
- Rule of Greatest Marginal Benefit: *Assign resources to most likely paths*, *over all pending paths*
- Optimal for constrained resources
- Cost: O(k*l*²) ; k<1

DEE in Practice

- Problem: hard to compute "true" cumulative probabilities dynamically
- Solution: DEE *static tree* heuristic:
 - Use average branch prediction accuracy (bpa or *p*) for all branches
 - Static tree shape determined as part of machine design

20

- Resources are fixed to the static tree
- Cost: still O(kl²); k<1</p>

DEE Performance Evaluation

- Method: pixie and modified dsim used
- Assumptions:
 - Unit latency
 - Dynamic Instruction Stream
 - MIPS R3000 instruction set
 - Practical version (heuristic) of DEE modelled

Harmonic Mean Summary

- 5 of 6 SPECint92 benchmarks used:
 - •cc1
 - compress

 - •eqntott
 - •espresso
 - •xlisp
 - •<=100 million instructions each
- 2-bit saturating counter predictor (Smith81)
- •"CD-MF" = "Minimal Control Dependencies"
- •"DEE-CD-MF" is DEE with MCD; used in Levo

Comments on Results

- Speedup factors of 26-31 demonstrated with limited resources and DEE-CD-MF
- <u>Combination</u> of DEE and minimal control dependencies is necessary
- Speedup of 20 potentially achievable with Levo

Levo

- Revised CONDEL-2 (Uht85, Uht92) + DEE
 From CONDEL-2:
 - IQ: Instruction Queue: static instruction window
 - SSI: register and memory renaming registers
 - ISA: storage addresses, one per SSI
- Implements: DEE-CD-MF
- 1-to-1 correspondence with ML and DEE paths of static tree

Summary

- Disjoint Eager Execution (DEE):
 - Optimal speculative execution
 - Realizes high ILP's even with hard-to-predictbranch-intensive general-purpose code
 - Achieves 59% of oracle performance
 - Ideas useful elsewhere:
 - Multiprocessors
 - VLIW / software-based ILP machines