
1

Disjoint Eager Execution:
An Optimal Form of Speculative Execution

or: ILP Speedups in the 10’s

Augustus (Gus) K. Uht and Vijay Sindagi

Dept. of Elect. and Computer Engr.

2

“A 21st-century microprocessor may well
[issue] up to dozens of instructions

[per cycle, peak]...”

David A. Patterson, in:
“Microprocessors in [the year] 2020”,
Scientific American, September 1995.

Prologue

3

Contributions of the Work

• New form of speculative execution (DEE)
– Optimal, low cost, high performance:

Speedup factors of 26-31 (2,600% - 3,100%)

• New machine model devised for DEE:

��������(target ILP: x 20)

– On single chip in 4-5 years (by 2000 AD!)

4

Acknowledgements

• This work supported by the Intel Corp.
through a grant from the Intel Research
Council. Other support from URI and NSF.

• Other contributors to the work:
– Sajee Somanathan

– Sridhar Mahankali

5

Rest of Talk

• Background
– ILP limits, Minimal control dependencies,

Speculative execution methods

• Disjoint Eager Execution (DEE)
– Theory

– Heuristic

– Performance evaluation

• The prototype: ����

6

Background

• Oracle ILP speedups:
– Riseman and Foster (1972), harmonic mean

speedup S = 25;

– Lam and Wilson (1992): S = 159; & others....

• w/ realistic constraints, only get: S = 2 to 3
(to date, using SPECint92’s)

• 50-100 million transistors/chip by 2000 AD

• Instruction set compatibility desirable

7

Minimal Control Dependencies
(Uht85, Ferrante87, Uht91)

• Classic model: restrictive control
dependencies

• Can be relaxed: w/MCD, 3 & 4 ind. of 1

1. if (a<8) {

2. b=c+d;}

3. x=y+z;

4. if (p>5) {...}

8

Speculative Execution

• Given: l is depth of greatest speculation

• Single Path (SP) - O(l) cost, but low
performance: cumulative prob. (cp) --> 0

• Eager Execution (EE) - best performance,
w/ infinite resources, but high cost: O(2l)

• Need something better, with good features
of both SP and EE:

Disjoint Eager Execution (DEE)

9

SP and EE Models
.7

1

.49
2

.34
3

.24
4

.17
5

.12
6

.7
1

.49

4

.3
2

.09
6

5
3 .21 .21

Single Path

Eager Execution

(l = 6)

(l = 2)

10

DEE Theory
• Branch Path (resources) definition:

dynamic code between branches (PE’s to
execute the code in the path as concurrently
as possible)

• Rule of Greatest Marginal Benefit:

Assign resources to most likely paths,

over all pending paths

• Optimal for constrained resources

• Cost: O(kl2) ; k<1

11

Assigning Resources
.7

1

12

Assigning Resources

.49
2

.7
1

13

Assigning Resources

.49
2

.7
1

.34
3

14

Assigning Resources

.49
2

.7
1

.34
3

4.3

15

Assigning Resources

.49
2

.7
1

.34
3

4.3

.24
5

16

Assigning Resources

.49
2

.7
1

.34
3

4.3

.24
5

6
.21

17

Assigning Resources

.49
2

.7
1

.34
3

4.3

.24
5

6
.21

7
.21

18

Assigning Resources

.49
2

.7
1

.34
3

4.3

.24
5

6
.21

7
.21

.17
8

19

Comparison of SP, EE and DEE

.12
6

.1 7

.7

.4 9
2

.3 4

.2 4

.3
1

3

.2 1

.1 5

.1 0

5

4

.0 7

.0 5

4 5

3

3

E ag er E x e cu tio n

D isjo in t E ag e r E x ecu tio nS in g le P a th

.7

.4 9 .2 1

.3

.0 9.2 1

1 2

6 62

1

.1 0

.7

.2 4

.3

.4 9 .2 1

.3 4 .1 5

5

4

(l = 6)

(l = 2)

(l = 4)

20

DEE in Practice

• Problem: hard to compute “true” cumulative
probabilities dynamically

• Solution: DEE static tree heuristic:
– Use average branch prediction accuracy (bpa or

p) for all branches

– Static tree shape determined as part of machine
design

– Resources are fixed to the static tree

– Cost: still O(kl2) ; k<1

21

Typical Static Tree

2 4 p a th s

B 1

l =

B 2

B 3

B 4

To ta l n u m b er o f b ran ch p a th s is 3 4 .

h

w D E E

D E E

.9 0 .1 0

.8 1

.7 3

.6 6

.0 9

.0 8

.0 7

.0 8 .0 8

.0 9

.0 7 .0 7 .0 7

.0 1

.0 8

D E E
M L

A n u m b er o n a p a th is th e o v e ra ll p ro b ab ility o f th e p a th b e in g ex ecu ted .

= 4 p a th s

9 0 % = 0 .9 0p =

(Main Line)

22

DEE Performance Evaluation

• Method: pixie and modified dsim used

• Assumptions:
– Unit latency

– Dynamic Instruction Stream

– MIPS R3000 instruction set

– Practical version (heuristic) of DEE modelled

23

Harmonic Mean Summary

• 5 of 6 SPECint92 benchmarks used:
•cc1
•compress
•eqntott
•espresso
•xlisp
•<=100 million instructions each

• 2-bit saturating counter predictor (Smith81)
•“CD-MF” = “Minimal Control Dependencies”

•“DEE-CD-MF” is DEE with MCD; used in ����

24

0

5

10

15

20

25

30

35

8 16 32 64 128 256

Resources (branch paths)

S
p

ee
d

u
p

 (
fa

ct
o

r
X

 s
eq

u
en

ti
al

) DEE-CD-MF

SP-CD-MF

DEE-CD

SP-CD

DEE

SP

EE

Harmonic MeanOracle Speedup: 53.82

<<<< ����

25

8 16 32 64 128 256

DEE-CD-MF
SP-CD-MF

DEE-CD

SP-CD

DEE

SP

EE
0

5

10

15

20

25

30

35

Sp
ee

du
p

(f
ac

to
r)

Resources (branch paths)

ILP
Model

Harmonic Mean
Summary

26

Comments on Results

• Speedup factors of 26-31 demonstrated with
limited resources and DEE-CD-MF

• Combination of DEE and minimal control
dependencies is necessary

• Speedup of 20 potentially achievable with

 ����

27

����

• Revised CONDEL-2 (Uht85, Uht92) + DEE
– From CONDEL-2:

• IQ: Instruction Queue: static instruction window

• SSI: register and memory renaming registers

• ISA: storage addresses, one per SSI

• Implements: DEE-CD-MF

• 1-to-1 correspondence with ML and DEE
paths of static tree

28

����

- D E E b ran c h in sta nc e

- lo g ic a l D E E p ath

b ran ch

b ran ch

b ran ch

b ran ch

resu lt

resu lt

resu lt

IQ
co n ten ts :

0 1 2 3 4(M L)

D E E reg io n

a .

a . - B ro a dc ast b u s fo r co p y in g of M L sta te to D E E p ath s .

b .

S S I S S I S S I S S I S S I

(p re-e x is tin g S S I)

C on n e ction s fo r IS A , e tc ., a re s im ilar.

N o te : a . an d b . ca n b e c o m b in e d in to a sin g le b id ire c tion a l b u s.

u p o n a D E E b ran c h re so lv in g a s m isp red ic te d .

b . - U pd a te b u s fo r co p y in g a D E E p ath sta te to M L p ath ,

29

Summary

• Disjoint Eager Execution (DEE):
– Optimal speculative execution

– Realizes high ILP’s even with hard-to-predict-
branch-intensive general-purpose code

– Achieves 59% of oracle performance

– Ideas useful elsewhere:
• Multiprocessors

• VLIW / software-based ILP machines

