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“A 21st-century microprocessor may well 
[issue] up to dozens of  instructions 

[per cycle, peak]...”

David A. Patterson, in:
“Microprocessors in [the year] 2020”,
Scientific American, September 1995.

Prologue
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Contributions of the Work

• New form of speculative execution (DEE)
– Optimal, low cost, high performance:

Speedup factors of  26-31 (2,600% - 3,100%)

• New machine model devised for DEE:

��������(target ILP: x 20)

– On single chip in 4-5 years (by 2000 AD!)
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Rest of Talk

• Background
– ILP limits, Minimal control dependencies,

Speculative execution methods

• Disjoint Eager Execution (DEE)
– Theory

– Heuristic

– Performance evaluation

• The prototype: ����
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Background

• Oracle ILP speedups:
– Riseman and Foster (1972), harmonic mean

speedup S = 25;

– Lam and Wilson (1992): S = 159;   & others....

• w/ realistic constraints, only get:   S = 2 to 3
(to date, using SPECint92’s)

• 50-100 million transistors/chip by 2000 AD

• Instruction set compatibility desirable
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Minimal Control Dependencies
(Uht85, Ferrante87, Uht91)

• Classic model: restrictive control
dependencies

• Can be relaxed: w/MCD, 3 & 4 ind. of 1

1. if (a<8) {

2. b=c+d;}

3. x=y+z;

4. if (p>5) {...}
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Speculative Execution

• Given: l is depth of greatest speculation

• Single Path (SP) - O(l) cost, but low
performance: cumulative prob. (cp) --> 0

• Eager Execution (EE) - best performance,
w/ infinite resources, but high cost: O(2l )

• Need something better, with good features
of both SP and EE:

Disjoint Eager Execution (DEE)
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SP and EE Models
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DEE Theory
• Branch Path (resources) definition:

dynamic code between branches (PE’s to
execute the code in the path as concurrently
as possible)

• Rule of Greatest Marginal Benefit:

Assign resources to most likely paths,

over all pending paths

• Optimal for constrained resources

• Cost: O(kl2) ; k<1
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Assigning Resources
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Comparison of SP, EE and DEE
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DEE in Practice

• Problem: hard to compute “true” cumulative
probabilities dynamically

• Solution: DEE static tree heuristic:
– Use average branch prediction accuracy (bpa or

p) for all branches

– Static tree shape determined as part of machine
design

– Resources are fixed to the static tree

– Cost: still O(kl2) ; k<1
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Typical Static Tree
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DEE Performance Evaluation

• Method: pixie and modified dsim used

• Assumptions:
– Unit latency

– Dynamic Instruction Stream

– MIPS R3000 instruction set

– Practical version (heuristic) of DEE modelled
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Harmonic Mean Summary

• 5 of 6 SPECint92 benchmarks used:
•cc1
•compress
•eqntott
•espresso
•xlisp
•<=100 million instructions each

• 2-bit saturating counter predictor (Smith81)
•“CD-MF” = “Minimal Control Dependencies”

•“DEE-CD-MF” is DEE with MCD; used in ����
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Comments on Results

• Speedup factors of 26-31 demonstrated with
limited resources and DEE-CD-MF

• Combination of  DEE and minimal control
dependencies is necessary

• Speedup of 20 potentially achievable with 

    ����
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• Revised CONDEL-2 (Uht85, Uht92) + DEE
– From CONDEL-2:

• IQ: Instruction Queue: static instruction window

• SSI: register and memory renaming registers

• ISA: storage addresses, one per SSI

• Implements:      DEE-CD-MF

• 1-to-1 correspondence with ML and DEE
paths of static tree
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Summary

• Disjoint Eager Execution (DEE):
– Optimal speculative execution

– Realizes high ILP’s even with hard-to-predict-
branch-intensive general-purpose code

– Achieves 59% of oracle performance

– Ideas useful elsewhere:
• Multiprocessors

• VLIW / software-based ILP machines


